参考文献
1. United States Senate. 1977. A Prefatory Statement of Senator INOUYE and Admiral STANSFIELD TURNER, DIRECTOR OF CENTRAL INTELLIGENCE. In: Project MKULTRA, the CIA’s program of research in behavioral modification. US Government Printing Office. p. 1–8. https://catalog.hathitrust.org/Record/002945217.
2. Scheflin AW, Opton EM. 1978. CHAPTER 3: TAMPERING WITH THE MIND (I) : THE CIA. In: The Mind Manipulators. Paddington Press. p. 106–169. https://books.google.com/books/about/The_Mind_Manipulators.html?id=9U8gAQAAIAAJ&redir_esc=y.
3. Davison N. 2009. 6 Directed Energy Weapons. In: “Non-Lethal” Weapons. Palgrave Macmillan. p. 143–185. https://books.google.com/books/about/Non_Lethal_Weapons.html?id=nq0pAQAAIAAJ&redir_esc=y.
4. Scheflin AW, Opton EM. 1978. CHAPTER 4: TAMPERING WITH THE MIND (II) : THE UNITED STATES ARMY. In: The Mind Manipulators. Paddington Press. p. 170–212. https://books.google.com/books/about/The_Mind_Manipulators.html?id=9U8gAQAAIAAJ&redir_esc=y.
5. National Research Council. 1982. Possible Long-Term Health Effects of Short-Term Exposure to Chemical Agents: Volume 1. The National Academies. https://doi.org/10.17226/740.
6. Bowart W. 1978. Chapter one The Cryptorian Candidate. In: Operation Mind Control. CreateSpace Independent Publishing Platform. p. 19–26. https://books.google.com/books/about/Operation_Mind_Control_the_CIA_s_Plot_Ag.html?id=TSTOAQAACAAJ&redir_esc=y.
7. Bowart W. 1978. Chapter Seventeen THE PATRIOTIC ASSASSIN. In: Operation Mind Control. CreateSpace Independent Publishing Platform. p. 232–248. https://books.google.com/books/about/Operation_Mind_Control_the_CIA_s_Plot_Ag.html?id=TSTOAQAACAAJ&redir_esc=y.
8. Hariz MI, Blomstedt P, Zrinzo L. 2010. Deep brain stimulation between 1947 and 1987: the untold story. FOC. 29(2):E1. doi:10.3171/2010.4.focus10106. http://dx.doi.org/10.3171/2010.4.focus10106.
9. O’Neal CM, Baker CM, Glenn CA, Conner AK, Sughrue ME. 2017. Dr. Robert G. Heath: a controversial figure in the history of deep brain stimulation. Neurosurgical Focus. 43(3):E12. doi:10.3171/2017.6.focus17252. http://dx.doi.org/10.3171/2017.6.focus17252.
10. Scheflin AW, Opton EM. 1978. CHAPTER 8: REWIRING THE MIND : ELECTRICAL STIMULATION OF THE BRAIN. In: The Mind Manipulators. Paddington Press. p. 325–353. https://books.google.com/books/about/The_Mind_Manipulators.html?id=9U8gAQAAIAAJ&redir_esc=y.
11. Rushton B. 1974. The Mysterious Experiments Of Dr. Heath IN WHICH WE WONDER WHO IS CRAZY & WHO IS SANE. In: The Vieux Carré Courier. p. 5–12. https://www.frenchquarterjournal.com/archives/bill-rushton-journalist-and-activist-part-two.
12. Baumeister A. 2000. The Tulane Electrical Brain Stimulation Program A Historical Case Study in Medical Ethics. Journal of the History of the Neurosciences. 9(3):262–278. doi:10.1076/jhin.9.3.262.1787. http://dx.doi.org/10.1076/jhin.9.3.262.1787.
13. Heath RG. 1971. Depth recording and stimulation studies in patients. In: Winter A, editor. Surgical Control of Behavior. Charles C. Thomas Publisher, Limited. p. 21–37. https://openlibrary.org/books/OL15027161M/The_surgical_control_of_behavior.
14. Mohr WcL, Gordonang JE. 2001. The Price of the Ticket. In: Tulane. LSU Press. p. 51–129. https://books.google.com/books/about/Tulane.html?id=xof4BkbI1DQC&redir_esc=y.
15. Monroe RR, Heath RG, Mickle WA, Llewellyn RC. 1957. Correlation of rhinencephalic electrograms with behavior. Electroencephalography and Clinical Neurophysiology. 9(4):623–642. doi:10.1016/0013-4694(57)90084-6. http://dx.doi.org/10.1016/0013-4694(57)90084-6.
16. United States Senate. 1973. STATEMENT OF ROBERT G. HEATH, M.D., PROFESSOR AND CHAIRMAN, DEPARTMENT OF PSYCHIATRY/NEUROLOGY, TULANE UNIVERSITY, SCHOOL OF MEDICINE, NEW ORLEANS, LA. In: Quality of Health Care — Human Experimentation, 1973. US Government Printing Office. p. 325–353. https://catalog.hathitrust.org/Record/000770078.
17. Horgan J. 2005. The Forgotten Era of Brain Chips. Sci Am. 293(4):66–73. doi:10.1038/scientificamerican1005-66. http://dx.doi.org/10.1038/scientificamerican1005-66.
18. Blackwell B. 2014. JOSE DELGADO: A CASE STUDY Science, Hubris, Nemesis and Redemption. INHN Projects. https://inhn.org/inhn-projects/ebooks/barry-blackwell-jose-delgado-a-case-study.
19. Delgado JMR. 1970. Physical Control of the Mind: Toward a Psychocivilized Society. CreateSpace Independent Publishing Platform. https://books.google.com/books/about/Physical_Control_of_the_Mind.html?id=nzIenQEACAAJ&redir_esc=y.
20. Breggin PR. 1982. The Return of Lobotomy and Psychosurgery. In: Edwards RB, editor. Psychiatry and ethics. Oxford University Press. p. 350–388. https://openlibrary.org/books/OL3509974M/Psychiatry_and_ethics.
21. MCAULIFFE K. 1985. The Mind Fields. In: Omni Magazine 1985 February - Volume 7, No. 5. General Media, Inc. p. 41–44. https://www.amazon.com/Omni-Magazine-February-1985-No/dp/B001JDFVYM.
22. Dietrichs E. 2022. Carl Wilhelm Sem-Jacobsen. Neurology. 98(5):199–203. doi:10.1212/wnl.0000000000013149. http://dx.doi.org/10.1212/wnl.0000000000013149.
23. Scheitler KM, Wijdicks EFM. 2024. When Walter Freeman Came to Town: The Prefrontal Lobotomy at Rochester State Hospital. Neurology. 103(8). doi:10.1212/wnl.0000000000209902. http://dx.doi.org/10.1212/wnl.0000000000209902.
24. Sem-Jacobsen CW. 1968. Chapter IX: Types of Responses of Total Study Population. In: Depth-electrographic stimulation of the human brain and behavior. Charles C Thomas. p. 72–178. https://books.google.com/books/about/Depth_electrographic_Stimulation_of_the.html?id=GaRrAAAAMAAJ&redir_esc=y.
25. Sem-Jacobsen C. W. 1976. Electrical Stimulation and Self-Stimulation in Man with Chronic Implanted Electrodes.Interpretation and Pitfalls of Results. In: Wauquier A, Rolls ET, editors. Brain-Stimulation Reward. North-Holland. p. 505–520. https://books.google.com/books/about/Brain_stimulation_Reward.html?id=_ePaAAAAMAAJ&redir_esc=y.
26. Sem-Jacobsen CW. 1968. Chapter I: Development of Depth-EEG Technique using Implanted Electrode. In: Depth-electrographic stimulation of the human brain and behavior. Charles C Thomas. p. 5–9. https://books.google.com/books/about/Depth_electrographic_Stimulation_of_the.html?id=GaRrAAAAMAAJ&redir_esc=y.
27. SCHWARZ BE. 1956. Effects of Mescaline, LSD-25, and Adrenochrome on Depth Electrograms in Man. Arch NeurPsych. 75(6):579. doi:10.1001/archneurpsyc.1956.02330240017002. http://dx.doi.org/10.1001/archneurpsyc.1956.02330240017002.
28. Bull KS, Kvernmo S, Roll-Hansen N, Unsgård G, Tapper NM, Nordby A. 2003. Kapittel 6 Elektroder. In: NOU 2003: 33. Oslo 2003. p. 60–83. https://www.regjeringen.no/no/dokumenter/nou-2003-33/id149032/?ch=1.
29. Bull KS, Kvernmo S, Roll-Hansen N, Unsgård G, Tapper NM, Nordby A. 2003. Kapittel 2 Sammendrag av utredningen. In: NOU 2003: 33. Oslo 2003. p. 12–14. https://www.regjeringen.no/no/dokumenter/nou-2003-33/id149032/?ch=1.
30. Casey BP. 2015. The Surgical Elimination of Violence? Conflicting Attitudes towards Technology and Science during the Psychosurgery Controversy of the 1970s. Sci Context. 28(1):99–129. doi:10.1017/s0269889714000349. http://dx.doi.org/10.1017/s0269889714000349.
31. Breggin PR. 1973. The Psychosurgery of Thomas R. A Follow-up Study. In: Issues in Radical Therapy. Vol. 1. IRT Collective. p. 3–5. https://searchworks-lb.stanford.edu/view/377351.
32. Scheflin AW, Opton EM. 1978. CHAPTER 7: PRUNING THE MIND : THE NEW PSYCHOSURGERY. In: The Mind Manipulators. Paddington Press. p. 266–324. https://books.google.com/books/about/The_Mind_Manipulators.html?id=9U8gAQAAIAAJ&redir_esc=y.
33. Mark VH, Ervin FR. 1970. Chapter 7: Brain Triggers for Violence. In: Violence and the Brain. Harpercollins College Div. p. 92–110. https://books.google.com/books/about/Violence_and_the_Brain.html?id=PjILAAAAIAAJ&redir_esc=y.
34. Breggin PR. 1973. Psychosurgery. JAMA. 226(9):1121. doi:10.1001/jama.1973.03230090045020. http://dx.doi.org/10.1001/jama.1973.03230090045020.
35. Breggin PR. 1994. Chapter 6: The First Violence Initiative: Psychosurgery for Social Control. In: The War Against Children. St. Martin’s Press. p. 115–136. https://books.google.com/books/about/The_War_Against_Children.html?id=QxmFQgAACAAJ&redir_esc=y.
36. Weissman MM, Klerman GL, Markowitz JS, Ouellette R. 1989. Suicidal Ideation and Suicide Attempts in Panic Disorder and Attacks. N Engl J Med. 321(18):1209–1214. doi:10.1056/nejm198911023211801. http://dx.doi.org/10.1056/nejm198911023211801.
37. Panksepp J. 1998. Chapter 11: The Sources of Fear and Anxiety in the Brain. In: Affective Neuroscience. Oxford University Press. p. 206–224. https://books.google.com/books/about/Affective_Neuroscience.html?id=qqcRGagyEuAC&redir_esc=y.
38. Vanderah TW. 2018. Nolte’s The Human Brain in Photographs and Diagrams E-Book. Elsevier Health Sciences. https://books.google.com/books/about/Nolte_s_The_Human_Brain_in_Photographs_a.html?id=416lwwEACAAJ&redir_esc=y.
39. Gross CT, Canteras NS. 2012. The many paths to fear. Nat Rev Neurosci. 13(9):651–658. doi:10.1038/nrn3301. http://dx.doi.org/10.1038/nrn3301.
40. Paxinos G, Watson C. 2009. The Rat Brain in Stereotaxic Coordinates. Elsevier/Academic. https://books.google.com/books/about/The_Rat_Brain_in_Stereotaxic_Coordinates.html?id=sQNfmwEACAAJ&redir_esc=y.
41. Raam T, Hong W. 2021. Organization of neural circuits underlying social behavior: A consideration of the medial amygdala. Current Opinion in Neurobiology. 68:124–136. doi:10.1016/j.conb.2021.02.008. http://dx.doi.org/10.1016/j.conb.2021.02.008.
42. Hashikawa Y, Hashikawa K, Falkner AL, Lin D. 2017. Ventromedial Hypothalamus and the Generation of Aggression. Front Syst Neurosci. 11. doi:10.3389/fnsys.2017.00094. http://dx.doi.org/10.3389/fnsys.2017.00094.
43. Li C, Miao C, Ge Y, Wu J, Gao P, Yin S, Zhang P, Yang H, Tian B, Chen W, et al. 2025. A molecularly distinct cell type in the midbrain regulates intermale aggression behaviors in mice. Theranostics. 15(2):707–725. doi:10.7150/thno.101658. http://dx.doi.org/10.7150/thno.101658.
44. Halász B. 2004. Anatomy of Hypothalamus. In: Encyclopedia of Endocrine Diseases. Elsevier. p. 81–89. http://dx.doi.org/10.1016/b978-0-12-812199-3.00722-2.
45. Strange BA, Witter MP, Lein ES, Moser EI. 2014. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 15(10):655–669. doi:10.1038/nrn3785. http://dx.doi.org/10.1038/nrn3785.
46. Rizzi-Wise CA, Wang DV. 2021. Putting Together Pieces of the Lateral Septum: Multifaceted Functions and Its Neural Pathways. eNeuro. 8(6):ENEURO.0315-21.2021. doi:10.1523/eneuro.0315-21.2021. http://dx.doi.org/10.1523/eneuro.0315-21.2021.
47. Milad MR, Quirk GJ, Pitman RK, Orr SP, Fischl B, Rauch SL. 2007. A Role for the Human Dorsal Anterior Cingulate Cortex in Fear Expression. Biological Psychiatry. 62(10):1191–1194. doi:10.1016/j.biopsych.2007.04.032. http://dx.doi.org/10.1016/j.biopsych.2007.04.032.
48. Berridge KC, Kringelbach ML. 2015. Pleasure Systems in the Brain. Neuron. 86(3):646–664. doi:10.1016/j.neuron.2015.02.018. http://dx.doi.org/10.1016/j.neuron.2015.02.018.
49. Nashold BS, Wilson WP, Slaughter DG. 1969. Sensations Evoked by Stimulation in the Midbrain of Man. Journal of Neurosurgery. 30(1):14–24. doi:10.3171/jns.1969.30.1.0014. http://dx.doi.org/10.3171/jns.1969.30.1.0014.
50. Amano K, Tanikawa T, Kawamura H, Iseki, H, Notani M, Kawabatake H, Shiwaku T, Suda T, Demura H, Kitamura K. 1982. Endorphins and pain relief. Further observations on electrical stimulation of the lateral part of the periaqueductal gray matter during rostral mesencephalic reticulotomy for pain relief. Stereotactic and Functional Neurosurgery. 45(1–2):123–135. https://pubmed.ncbi.nlm.nih.gov/6977314/.
51. Franzini A, Ferroli P, Leone M, Bussone G, Broggi G. 2004. Hypothalamic Deep Brain Stimulation for the Treatment of Chronic Cluster Headaches: A Series Report. Neuromodulation: Technology at the Neural Interface. 7(1):1–8. doi:10.1111/j.1525-1403.2004.04001.x. http://dx.doi.org/10.1111/j.1525-1403.2004.04001.x.
52. Schoenen J. 2005. Hypothalamic stimulation in chronic cluster headache: a pilot study of efficacy and mode of action. Brain. 128(4):940–947. doi:10.1093/brain/awh411. http://dx.doi.org/10.1093/brain/awh411.
53. Bartsch T, Pinsker M, Rasche D, Kinfe T, Hertel F, Diener H, Tronnier V, Mehdorn H, Volkmann J, Deuschl G, et al. 2008. Hypothalamic Deep Brain Stimulation for Cluster Headache: Experience From a New Multicase Series. Cephalalgia. 28(3):285–295. doi:10.1111/j.1468-2982.2007.01531.x. http://dx.doi.org/10.1111/j.1468-2982.2007.01531.x.
54. Pinsker MO, Bartsch T, Falk D, Volkmann J, Herzog J, Steigerwald F, Diener HC, Deuschl G, Mehdorn M. 2008. Failure of Deep Brain Stimulation of the Posterior Inferior Hypothalamus in Chronic Cluster Headache - Report of Two Cases and Review of the Literature. Zentralbl Neurochir. 69(2):76–79. doi:10.1055/s-2007-1022558. http://dx.doi.org/10.1055/s-2007-1022558.
55. Wilent WB, Oh MY, Buetefisch CM, Bailes JE, Cantella D, Angle C, Whiting DM. 2010. Induction of panic attack by stimulation of the ventromedial hypothalamus. JNS. 112(6):1295–1298. doi:10.3171/2009.9.jns09577. http://dx.doi.org/10.3171/2009.9.jns09577.
56. Shapira NA. 2005. Panic and fear induced by deep brain stimulation. Journal of Neurology, Neurosurgery & Psychiatry. 77(3):410–412. doi:10.1136/jnnp.2005.069906. http://dx.doi.org/10.1136/jnnp.2005.069906.
57. Okun MS, Mann G, Foote KD, Shapira NA, Bowers D, Springer U, Knight W, Martin P, Goodman WK. 2006. Deep brain stimulation in the internal capsule and nucleus accumbens region: responses observed during active and sham programming. Journal of Neurology, Neurosurgery & Psychiatry. 78(3):310–314. doi:10.1136/jnnp.2006.095315. http://dx.doi.org/10.1136/jnnp.2006.095315.
58. Walcott BP, Bamber NI, Anderson DE. 2009. SUCCESSFUL TREATMENT OF CHRONIC PAROXYSMAL HEMICRANIA WITH POSTERIOR HYPOTHALAMIC STIMULATION. Neurosurgery. 65(5):E997. doi:10.1227/01.neu.0000345937.05186.73. http://dx.doi.org/10.1227/01.neu.0000345937.05186.73.
59. Piacentini S, Romito L, Franzini A, Granato A, Broggi G, Albanese A. 2008. Mood disorder following DBS of the left amygdaloid region in a dystonia patient with a dislodged electrode. Movement Disorders. 23(1):147–150. doi:10.1002/mds.21805. http://dx.doi.org/10.1002/mds.21805.
60. Bewernick BH, Kayser S, Sturm V, Schlaepfer TE. 2012. Long-Term Effects of Nucleus Accumbens Deep Brain Stimulation in Treatment-Resistant Depression: Evidence for Sustained Efficacy. Neuropsychopharmacol. 37(9):1975–1985. doi:10.1038/npp.2012.44. http://dx.doi.org/10.1038/npp.2012.44.
61. Huff W, Lenartz D, Schormann M, Lee S-H, Kuhn J, Koulousakis A, Mai J, Daumann J, Maarouf M, Klosterkötter J, et al. 2010. Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: Outcomes after one year. Clinical Neurology and Neurosurgery. 112(2):137–143. doi:10.1016/j.clineuro.2009.11.006. http://dx.doi.org/10.1016/j.clineuro.2009.11.006.
62. Mallet L, Polosan M, Jaafari N, Baup N, Welter M-L, Fontaine D, Montcel ST du, Yelnik J, Chéreau I, Arbus C, et al. 2008. Subthalamic Nucleus Stimulation in Severe Obsessive–Compulsive Disorder. N Engl J Med. 359(20):2121–2134. doi:10.1056/nejmoa0708514. http://dx.doi.org/10.1056/nejmoa0708514.
63. Penfield W, Rasmussen T. 1968. Sensorimotor Representation of the Body. In: The Cerebral Cortex of Man. Macmillan Publishers. p. 11–66. https://books.google.com/books/about/The_cerebral_cortex_of_man.html?id=LHguAAAAIAAJ&redir_esc=y.
64. PENFIELD W. 1938. THE CEREBRAL CORTEX IN MAN. Arch NeurPsych. 40(3):417. doi:10.1001/archneurpsyc.1938.02270090011001. http://dx.doi.org/10.1001/archneurpsyc.1938.02270090011001.
65. PENFIELD W, PEROT P. 1963. THE BRAIN’S RECORD OF AUDITORY AND VISUAL EXPERIENCE. Brain. 86(4):595–696. doi:10.1093/brain/86.4.595. http://dx.doi.org/10.1093/brain/86.4.595.
66. Gloor P, Olivier A, Quesney LF, Andermann F, Horowitz S. 1982. The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Annals of Neurology. 12(2):129–144. doi:10.1002/ana.410120203. http://dx.doi.org/10.1002/ana.410120203.
67. Inman CS, Bijanki KR, Bass DI, Gross RE, Hamann S, Willie JT. 2020. Human amygdala stimulation effects on emotion physiology and emotional experience. Neuropsychologia. 145:106722. doi:10.1016/j.neuropsychologia.2018.03.019. http://dx.doi.org/10.1016/j.neuropsychologia.2018.03.019.
68. Bejjani B-P, Damier P, Arnulf I, Thivard L, Bonnet A-M, Dormont D, Cornu P, Pidoux B, Samson Y, Agid Y. 1999. Transient Acute Depression Induced by High-Frequency Deep-Brain Stimulation. N Engl J Med. 340(19):1476–1480. doi:10.1056/nejm199905133401905. http://dx.doi.org/10.1056/nejm199905133401905.
69. Blomstedt P, Hariz MI, Lees A, Silberstein P, Limousin P, Yelnik J, Agid Y. 2008. Acute severe depression induced by intraoperative stimulation of the substantia nigra: A case report. Parkinsonism & Related Disorders. 14(3):253–256. doi:10.1016/j.parkreldis.2007.04.005. http://dx.doi.org/10.1016/j.parkreldis.2007.04.005.
70. Sabolek M, Uttner I, Seitz K, Kraft E, Storch A. 2009. Stimulation dependent induction of fear and depression in deep brain stimulation: a case report. J Med Case Rep. 3(1):9136. doi:10.4076/1752-1947-3-9136. http://dx.doi.org/10.4076/1752-1947-3-9136.
71. Bekhtereva NP. 1969. 5.9 . Emotionen. In: Physiologie und Pathophysiologie der tiefen Hirnstrukturen des Menschen. Verlag Volk und Gesundheit VEB. p. 163–178. https://openlibrary.org/books/OL17308974M/Physiologie_und_Pathophysiologie_der_tiefen_Hirnstrukturen_des_Menschen.
72. Meletti S, Tassi L, Mai R, Fini N, Tassinari CA, Russo GL. 2006. Emotions Induced by Intracerebral Electrical Stimulation of the Temporal Lobe. Epilepsia. 47(s5):47–51. doi:10.1111/j.1528-1167.2006.00877.x. http://dx.doi.org/10.1111/j.1528-1167.2006.00877.x.
73. Oane I, Barborica A, Chetan F, Donos C, Maliia MD, Arbune AA, Daneasa A, Pistol C, Nica AE, Bajenaru OA, et al. 2020. Cingulate cortex function and multi-modal connectivity mapped using intracranial stimulation. NeuroImage. 220:117059. doi:10.1016/j.neuroimage.2020.117059. http://dx.doi.org/10.1016/j.neuroimage.2020.117059.
74. Caruana F, Gerbella M, Avanzini P, Gozzo F, Pelliccia V, Mai R, Abdollahi RO, Cardinale F, Sartori I, Lo Russo G, et al. 2018. Motor and emotional behaviours elicited by electrical stimulation of the human cingulate cortex. Brain. 141(10):3035–3051. doi:10.1093/brain/awy219. http://dx.doi.org/10.1093/brain/awy219.
75. Laitinen LV. 1979. Emotional responses to subcortical electrical stimulation in psychiatric patients. Clinical Neurology and Neurosurgery. 81(3):148–157. doi:10.1016/0303-8467(79)90002-7. http://dx.doi.org/10.1016/0303-8467(79)90002-7.
76. Hess WR, Brügger M. 1943. Das subkortikale Zentrum der affektiven Abwehrreaktion. Helvetica Physiologica et Pharmacologica Acta. 1(1):319–327. https://psycnet.apa.org/record/1944-01673-001.
77. Hess WR. 1958. The Functional Organization of the Diencephalon. New York, Grune & Stratton. https://books.google.com/books/about/The_functional_organization_of_the_dienc.html?id=letqAAAAMAAJ&redir_esc=y.
78. Miller NE. 1961. Learning and Performance Motivated by Direct Stimulation of the Brain. In: Sheer DE, editor. Electrical Stimulation of the Brain. The University of Texas Press. p. 387–396. https://openlibrary.org/books/OL6246514M/Electrical_stimulation_of_the_brain.
79. Roberts WW. 1958. Rapid escape learning without avoidance learning motivated by hypothalamic stimulation in cats. Journal of Comparative and Physiological Psychology. 51(4):391–399. doi:10.1037/h0042900. http://dx.doi.org/10.1037/h0042900.
80. Hunsperger RW, Bucher VM. 1967. Affective Behaviour produced by Electrical Stimulation in the Forebrain and Brain Stem of the Cat. In: Progress in Brain Research. Elsevier. p. 103–127. http://dx.doi.org/10.1016/s0079-6123(08)63095-2.
81. Nakao H. 1958. Emotional Behavior Produced by Hypothalamic Stimulation. American Journal of Physiology-Legacy Content. 194(2):411–418. doi:10.1152/ajplegacy.1958.194.2.411. http://dx.doi.org/10.1152/ajplegacy.1958.194.2.411.
82. Yasukochi G. 1960. EMOTIONAL RESPONSES ELICITED BY ELECTRICAL STIMULATION OF THE HYPOTHALAMUS IN CAT. Psychiatry Clin Neurosci. 14(3):260–267. doi:10.1111/j.1440-1819.1960.tb02246.x. http://dx.doi.org/10.1111/j.1440-1819.1960.tb02246.x.
83. Romaniuk A. 1965. Representation of aggression and flight reactions in the hypothalamus of the cat. Acta Biologiae Experimentalis. 25(3):177–186. https://psycnet.apa.org/record/1966-02489-001.
84. SKULTETY FM. 1963. Stimulation of Periaqueductal Gray and Hypothalamus. Archives of Neurology. 8(6):608–620. doi:10.1001/archneur.1963.00460060038004. http://dx.doi.org/10.1001/archneur.1963.00460060038004.
85. Zhang SP, Bandler R, Carrive P. 1990. Flight and immobility evoked by excitatory amino acid microinjection within distinct parts of the subtentorial midbrain periaqueductal gray of the cat. Brain Research. 520(1–2):73–82. doi:10.1016/0006-8993(90)91692-a. http://dx.doi.org/10.1016/0006-8993(90)91692-a.
86. Bandler R, Depaulis A. 1991. Midbrain Periaqueductal Gray Control of Defensive Behavior in the Cat and the Rat. In: The Midbrain Periaqueductal Gray Matter. Springer US. p. 175–198. http://dx.doi.org/10.1007/978-1-4615-3302-3_11.
87. Gastaut H, Naquet R, Vigoroux R, Corriol J. 1952. Provocation de comportements émotionnels divers par stimulation rhinencéphalique chez le chat avec électrodes à demeure. Neurology, physiology, and infectious diseases Volume 3. 86(4):319–327. https://psycnet.apa.org/record/1953-07540-001.
88. Shealy CN, Peele TL. 1957. STUDIES ON AMYGDALOID NUCLEUS OF CAT. Journal of Neurophysiology. 20(2):125–139. doi:10.1152/jn.1957.20.2.125. http://dx.doi.org/10.1152/jn.1957.20.2.125.
89. Ursin H, Kaada BR. 1960. Functional localization within the amygdaloid complex in the cat. Electroencephalography and Clinical Neurophysiology. 12(1):1–20. doi:10.1016/0013-4694(60)90058-4. http://dx.doi.org/10.1016/0013-4694(60)90058-4.
90. de Molina AF, Hunsperger RW. 1959. Central representation of affective reactions in forebrain and brain stem: electrical stimulation of amygdala, stria terminalis, and adjacent structures. The Journal of Physiology. 145(2):251–265. doi:10.1113/jphysiol.1959.sp006140. http://dx.doi.org/10.1113/jphysiol.1959.sp006140.
91. Davis M. 1984. The Mammalian Startle Response. In: Neural Mechanisms of Startle Behavior. Springer US. p. 287–351. http://dx.doi.org/10.1007/978-1-4899-2286-1_10.
92. Rosen JB, Davis M. 1988. Enhancement of acoustic startle by electrical stimulation of the amygdala. Behavioral Neuroscience. 102(2):195–202. doi:10.1037/0735-7044.102.2.195. http://dx.doi.org/10.1037/0735-7044.102.2.195.
93. Kaada BR, Jarisen J Jr, Andersen P. 1953. Stimulation of the Hippocampus and Medial Cortical Areas in Unanesthetized Cats. Neurology. 3(11):844–844. doi:10.1212/wnl.3.11.844. http://dx.doi.org/10.1212/wnl.3.11.844.
94. Lipp HP, Hunsperger RW. 1978. Threat, Attack and Flight Elicited by Electrical Stimulation of the Ventromedial Hypothalamus of the Marmoset Monkey <i>Callithrix jacchus</i>; pp. 276–293. Brain Behav Evol. 15(4):276–293. doi:10.1159/000123783. http://dx.doi.org/10.1159/000123783.
95. Segundo JP, Arana R, French JD. 1955. Behavioral Arousal by Stimulation of the Brain in the Monkey. Journal of Neurosurgery. 12(6):601–613. doi:10.3171/jns.1955.12.6.0601. http://dx.doi.org/10.3171/jns.1955.12.6.0601.
96. Fonberg E. 1967. The motivational role of the hypothalamus in animal behaviour. Acta Biologiae Experimentalis. 27(3). https://europepmc.org/article/med/6082745.
97. Duan Y-F, Winters R, McCabe PM, Green EJ, Huang Y, Schneiderman N. 1996. Behavioral characteristics of defense and vigilance reactions elicited by electrical stimulation of the hypothalamus in rabbits. Behavioural Brain Research. 81(1–2):33–41. doi:10.1016/s0166-4328(96)00042-3. http://dx.doi.org/10.1016/s0166-4328(96)00042-3.
98. APPLEGATE C, KAPP B, UNDERWOOD M, MCNALL C. 1983. Autonomic and somatomotor effects of amygdala central N. stimulation in awake rabbits☆. Physiology & Behavior. 31(3):353–360. doi:10.1016/0031-9384(83)90201-9. http://dx.doi.org/10.1016/0031-9384(83)90201-9.
99. Åkerman B. 1966. Behavioural Effects of Electrical Stimulation in the Forebrain of the Pigeon Ii. Protective Behaviour. Behav. 26(3–4):339–349. doi:10.1163/156853965x00255. http://dx.doi.org/10.1163/156853965x00255.
100. von Holst E, von Saint Paul U. 1962. Electrically Controlled Behavior. Sci Am. 206(3):50–59. doi:10.1038/scientificamerican0362-50. http://dx.doi.org/10.1038/scientificamerican0362-50.
101. Báez-Mendoza R, Schultz W. 2013. The role of the striatum in social behavior. Front Neurosci. 7. doi:10.3389/fnins.2013.00233. http://dx.doi.org/10.3389/fnins.2013.00233.
102. Villablanca JR. 2011. Why do we have a caudate nucleus? Acta Neurobiologiae Experimentalis. 70(1):95–105. https://dx.doi.org/10.55782/ane-2010-1778.
103. Richfield EK, Twyman R, Berent S. 1987. Neurological syndrome following bilateral damage to the head of the caudate nuclei. Annals of Neurology. 22(6):768–771. doi:10.1002/ana.410220615. http://dx.doi.org/10.1002/ana.410220615.
104. Hynd GW, Hern KL, Novey ES, Eliopulos D, Marshall R, Gonzalez JJ, Voeller KK. 1993. Attention Deficit- Hyperactivity Disorder and Asymmetry of the Caudate Nucleus. J Child Neurol. 8(4):339–347. doi:10.1177/088307389300800409. http://dx.doi.org/10.1177/088307389300800409.
105. Narikiyo K, Mizuguchi R, Ajima A, Shiozaki M, Hamanaka H, Johansen JP, Mori K, Yoshihara Y. 2020. The claustrum coordinates cortical slow-wave activity. Nat Neurosci. 23(6):741–753. doi:10.1038/s41593-020-0625-7. http://dx.doi.org/10.1038/s41593-020-0625-7.
106. Marzullo TC. 2017. The Missing Manuscript of Dr. Jose Delgado’s Radio Controlled Bulls. The Journal of Undergraduate Neuroscience Education (JUNE). 15(2):29–35. https://pmc.ncbi.nlm.nih.gov/articles/PMC5480854/.
107. Delgado JoséMR, Johnston VS, Wallace JD, Bradley RJ. 1970. Operant conditioning of amygdala spindling in the free chimpanzee. Brain Research. 22(3):347–362. doi:10.1016/0006-8993(70)90476-2. http://dx.doi.org/10.1016/0006-8993(70)90476-2.
108. Delgado JMR. 1964. Free Behavior and Brain Stimulation. In: International Review of Neurobiology. Elsevier. p. 349–449. http://dx.doi.org/10.1016/s0074-7742(08)60773-4.
109. Delgado JMR. 1963. Cerebral Heterostimulation in a Monkey Colony. Science. 141(3576):161–163. doi:10.1126/science.141.3576.161. http://dx.doi.org/10.1126/science.141.3576.161.
110. Rubinstein EH, Delgado JMR. 1963. Inhibition induced by forebrain stimulation in the monkey. American Journal of Physiology-Legacy Content. 205(5):941–948. doi:10.1152/ajplegacy.1963.205.5.941. http://dx.doi.org/10.1152/ajplegacy.1963.205.5.941.
111. Delgado JMR. 1975. Inhibitory Systems and Emotions. In: Levi L, Euler US, editors. Emotions, Their Parameters and Measurement. Raven Press. p. 183–204. https://books.google.com/books/about/Emotions_their_parameters_and_measuremen.html?id=NU1qAAAAMAAJ&redir_esc=y.
112. Plumer SI, Siegel J. 1973. Caudate-induced inhibition of hypothalamic attack behavior. Psychobiology. 1(3):254–256. doi:10.3758/bf03326917. http://dx.doi.org/10.3758/bf03326917.
113. Thomas E, Evans GJ. 1983. Septal inhibition of aversive emotional states. Physiology & Behavior. 31(5):673–678. doi:10.1016/s0031-9384(83)80002-x. http://dx.doi.org/10.1016/s0031-9384(83)80002-x.
114. Brayley KN, Albert DJ. 1977. Suppression of VMH-lesion-induced reactivity and aggressiveness in the rat by stimulation of lateral septum, but not medial septum or cingulate cortex. Journal of Comparative and Physiological Psychology. 91(2):290–299. doi:10.1037/h0077323. http://dx.doi.org/10.1037/h0077323.
115. Lineberry CG, Vierck CJ. 1975. Attenuation of pain reactivity by caudate nucleus stimulation in monkeys. Brain Research. 98(1):119–134. doi:10.1016/0006-8993(75)90513-2. http://dx.doi.org/10.1016/0006-8993(75)90513-2.
116. Koubeissi MZ, Bartolomei F, Beltagy A, Picard F. 2014. Electrical stimulation of a small brain area reversibly disrupts consciousness. Epilepsy & Behavior. 37:32–35. doi:10.1016/j.yebeh.2014.05.027. http://dx.doi.org/10.1016/j.yebeh.2014.05.027.
117. Gabor AJ, Peele TL. 1964. Alterations of behavior following stimulation of the claustrum of the cat. Electroencephalography and Clinical Neurophysiology. 17(5):513–519. doi:10.1016/0013-4694(64)90181-6. http://dx.doi.org/10.1016/0013-4694(64)90181-6.
118. Bayat A, Joshi S, Jahan S, Connell P, Tsuchiya K, Chau D, Syed T, Forcelli P, Koubeissi MZ. 2018. A pilot study of the role of the claustrum in attention and seizures in rats. Epilepsy Research. 140:97–104. doi:10.1016/j.eplepsyres.2018.01.006. http://dx.doi.org/10.1016/j.eplepsyres.2018.01.006.
119. Van Buren JM. 1963. Confusion and Disturbance of Speech from Stimulation in Vicinity of the Head of the Caudate Nucleus. Journal of Neurosurgery. 20(2):148–157. doi:10.3171/jns.1963.20.2.0148. http://dx.doi.org/10.3171/jns.1963.20.2.0148.
120. Kwak R, Okudaira Y, Sakamoto T, Otabe K, Ohi T, Niizuma H, Suzuki J, Saso S. 1978. Arrest Reaction in Man. Stereotact Funct Neurosurg. 41(1–4):209–216. doi:10.1159/000102418. http://dx.doi.org/10.1159/000102418.
121. Hunter J, Jasper HH. 1949. Effects of thalamic stimulation in unanaesthetised animals. Electroencephalography and Clinical Neurophysiology. 1(1–4):305–324. doi:10.1016/0013-4694(49)90196-0. http://dx.doi.org/10.1016/0013-4694(49)90196-0.
122. McLennan H, Emmons PR, Plummer PM. 1964. SOME BEHAVIORAL EFFECTS OF STIMULATION OF THE CAUDATE NUCLEUS IN UNRESTRAINED CATS. Can J Physiol Pharmacol. 42(3):329–339. doi:10.1139/y64-039. http://dx.doi.org/10.1139/y64-039.
123. STEVENS JR. 1961. Stimulation of Caudate Nucleus. Arch Neurol. 4(1):47. doi:10.1001/archneur.1961.00450070049006. http://dx.doi.org/10.1001/archneur.1961.00450070049006.
124. Buchwald NA, Wyers EJ, Lauprecht CW, Heuser G. 1961. The “caudate-spindle” IV. A behavioral index of caudate-induced inhibition. Electroencephalography and Clinical Neurophysiology. 13(4):531–537. doi:10.1016/0013-4694(61)90167-5. http://dx.doi.org/10.1016/0013-4694(61)90167-5.
125. Smith WK. 1945. THE FUNCTIONAL SIGNIFICANCE OF THE ROSTRAL CINGULAR CORTEX AS REVEALED BY ITS RESPONSES TO ELECTRICAL EXCITATION. Journal of Neurophysiology. 8(4):241–255. doi:10.1152/jn.1945.8.4.241. http://dx.doi.org/10.1152/jn.1945.8.4.241.
126. Kitsikis A. 1968. The suppression of arm movements in monkeys: threshold variations of caudate nucleus stimulation. Brain Research. 10(3):460–462. doi:10.1016/0006-8993(68)90216-3. http://dx.doi.org/10.1016/0006-8993(68)90216-3.
127. Goldzband MG, Goldberg SE, Clark G. 1951. Cessation of Walking Elicited by Stimulation of the Forebrain of the Unanesthetized Dog. American Journal of Physiology-Legacy Content. 167(1):127–133. doi:10.1152/ajplegacy.1951.167.1.127. http://dx.doi.org/10.1152/ajplegacy.1951.167.1.127.
128. Klemm WR, Dreyfus LR. 1975. Septal- and caudate-induced behavioral inhibition in relation to hippocampal EEG of rabbits. Physiology & Behavior. 15(5):561–567. doi:10.1016/s0031-9384(75)80031-x. http://dx.doi.org/10.1016/s0031-9384(75)80031-x.
129. Kopp R, Bohdanecky Z, Jarvik ME. 1966. Long Temporal Gradient of Retrograde Amnesia for a Well-Discriminated Stimulus. Science. 153(3743):1547–1549. doi:10.1126/science.153.3743.1547. http://dx.doi.org/10.1126/science.153.3743.1547.
130. Lidsky A, Slotnick BM. 1970. Electrical stimulation of the hippocampus and electroconvulsive shock produce similar amnestic effects in mice. Neuropsychologia. 8(3):363–369. doi:10.1016/0028-3932(70)90080-1. http://dx.doi.org/10.1016/0028-3932(70)90080-1.
131. Bresnahan E, Routtenberg A. 1972. Memory disruption by unilateral low level, sub-seizure stimulation of the medial amygdaloid nucleus. Physiology & Behavior. 9(4):513–525. doi:10.1016/0031-9384(72)90006-6. http://dx.doi.org/10.1016/0031-9384(72)90006-6.
132. Wyers EJ, Peeke HVS, Williston JS, Herz MJ. 1968. Retroactive impairment of passive avoidance learning by stimulation of the caudate nucleus. Experimental Neurology. 22(3):350–366. doi:10.1016/0014-4886(68)90002-2. http://dx.doi.org/10.1016/0014-4886(68)90002-2.
133. Wyers EJ, Deadwyler SA. 1971. Duration and nature of retrograde amnesia produced by stimulation of caudate nucleus. Physiology & Behavior. 6(2):97–103. doi:10.1016/0031-9384(71)90075-8. http://dx.doi.org/10.1016/0031-9384(71)90075-8.
134. Peeke HVS, Herz MJ. 1971. Caudate Nucleus Stimulation Retroactively Impairs Complex Maze Learning in the Rat. Science. 173(3991):80–82. doi:10.1126/science.173.3991.80. http://dx.doi.org/10.1126/science.173.3991.80.
135. Heath RG, Hodes R. 2017. Induction of sleep by stimulation of the caudate nucleus in Macaqus rhesus and man. Transactions of the American Neurological Association. 56(77th Meeting):204–210. https://pmc.ncbi.nlm.nih.gov/articles/PMC5480854/.
136. Bekhtereva N. P. 1969. 5.4. Bewußtsein und Wachsein. In: Physiologie und Pathophysiologie der tiefen Hirnstrukturen des Menschen. Verlag Volk und Gesundheit VEB. p. 154–156. https://openlibrary.org/books/OL17308974M/Physiologie_und_Pathophysiologie_der_tiefen_Hirnstrukturen_des_Menschen.
137. AKERT K, ANDERSSON B. 1951. Experimenteller Beitrag zur Physiologie des Nucleus caudatus. Acta Physiologica Scandinavica. 22(2–3):281–298. doi:10.1111/j.1748-1716.1951.tb00779.x. http://dx.doi.org/10.1111/j.1748-1716.1951.tb00779.x.
138. Sterman MB, Clemente CD. 1962. Forebrain inhibitory mechanisms: Sleep patterns induced by basal forebrain stimulation in the behaving cat. Experimental Neurology. 6(2):103–117. doi:10.1016/0014-4886(62)90081-x. http://dx.doi.org/10.1016/0014-4886(62)90081-x.
139. Sterman MB, Clemente CD. 1962. Forebrain inhibitory mechanisms: Cortical synchronization induced by basal forebrain stimulation. Experimental Neurology. 6(2):91–102. doi:10.1016/0014-4886(62)90080-8. http://dx.doi.org/10.1016/0014-4886(62)90080-8.
140. Lineberry CG, Siegel J. 1971. EEG synchronization, behavioral inhibition, and mesencephalic unit effects produced by stimulation of orbital cortex, basal forebrain and caudate nucleus. Brain Research. 34(1):143–161. doi:10.1016/0006-8993(71)90356-8. http://dx.doi.org/10.1016/0006-8993(71)90356-8.
141. Sheer DE. 1961. Emotional Facilitation in Learning Situations with Subcortical Stimulation. In: Sheer Daniel Elvin, editor. Electrical Stimulation of the Brain. The University of Texas Press. p. 431–464. https://openlibrary.org/books/OL6246514M/Electrical_stimulation_of_the_brain.
142. Smith OA. 1961. Food intake and hypothalamic stimulation. In: Sheer DE, editor. Electrical Stimulation of the Brain. The University of Texas Press. p. 367–370. https://openlibrary.org/books/OL6246514M/Electrical_stimulation_of_the_brain.
143. Morgane PJ. 1961. Electrophysiological studies of feeding and satiety centers in the rat. American Journal of Physiology-Legacy Content. 201(5):838–844. doi:10.1152/ajplegacy.1961.201.5.838. http://dx.doi.org/10.1152/ajplegacy.1961.201.5.838.
144. Panksepp J, Burgdorf J. 2003. “Laughing” rats and the evolutionary antecedents of human joy? Physiology & Behavior. 79(3):533–547. doi:10.1016/s0031-9384(03)00159-8. http://dx.doi.org/10.1016/s0031-9384(03)00159-8.
145. Davila Ross M, J Owren M, Zimmermann E. 2009. Reconstructing the Evolution of Laughter in Great Apes and Humans. Current Biology. 19(13):1106–1111. doi:10.1016/j.cub.2009.05.028. http://dx.doi.org/10.1016/j.cub.2009.05.028.
146. Winkler SL, Bryant GA. 2021. Play vocalisations and human laughter: a comparative review. Bioacoustics. 30(5):499–526. doi:10.1080/09524622.2021.1905065. http://dx.doi.org/10.1080/09524622.2021.1905065.
147. Krack P, Kumar R, Ardouin C, Dowsey PL, McVicker JM, Benabid A, Pollak P. 2001. Mirthful laughter induced by subthalamic nucleus stimulation. Movement Disorders. 16(5):867–875. doi:10.1002/mds.1174. http://dx.doi.org/10.1002/mds.1174.
148. Caruana F, Avanzini P, Gozzo F, Francione S, Cardinale F, Rizzolatti G. 2015. Mirth and laughter elicited by electrical stimulation of the human anterior cingulate cortex. Cortex. 71:323–331. doi:10.1016/j.cortex.2015.07.024. http://dx.doi.org/10.1016/j.cortex.2015.07.024.
149. Bijanki KR, Manns JR, Inman CS, Choi KS, Harati S, Pedersen NP, Drane DL, Waters AC, Fasano RE, Mayberg HS, et al. 2019. Cingulum stimulation enhances positive affect and anxiolysis to facilitate awake craniotomy. Journal of Clinical Investigation. 129(3):1152–1166. doi:10.1172/jci120110. http://dx.doi.org/10.1172/jci120110.
150. Sperli F, Spinelli L, Pollo C, Seeck M. 2006. Contralateral Smile and Laughter, but No Mirth, Induced by Electrical Stimulation of the Cingulate Cortex. Epilepsia. 47(2):440–443. doi:10.1111/j.1528-1167.2006.00442.x. http://dx.doi.org/10.1111/j.1528-1167.2006.00442.x.
151. Fried I, Wilson CL, MacDonald KA, Behnke EJ. 1998. Electric current stimulates laughter. Nature. 391(6668):650–650. doi:10.1038/35536. http://dx.doi.org/10.1038/35536.
152. Schmitt JJ, Janszky J, Woermann F, Tuxhorn I, Ebner A. 2006. Laughter and the mesial and lateral premotor cortex. Epilepsy & Behavior. 8(4):773–775. doi:10.1016/j.yebeh.2006.03.003. http://dx.doi.org/10.1016/j.yebeh.2006.03.003.
153. Krolak‐Salmon P, Hénaff M, Vighetto A, Bauchet F, Bertrand O, Mauguière F, Isnard J. 2005. Experiencing and detecting happiness in humans: The role of the supplementary motor area. Annals of Neurology. 59(1):196–199. doi:10.1002/ana.20706. http://dx.doi.org/10.1002/ana.20706.
154. Vaca GF, Lüders HO, Basha MM, Miller JP. 2011. Mirth and laughter elicited during brain stimulation. Epileptic Disorders. 13(4):435–440. doi:10.1684/epd.2011.0480. http://dx.doi.org/10.1684/epd.2011.0480.
155. Caruana F, Gozzo F, Pelliccia V, Cossu M, Avanzini P. 2016. Smile and laughter elicited by electrical stimulation of the frontal operculum. Neuropsychologia. 89:364–370. doi:10.1016/j.neuropsychologia.2016.07.001. http://dx.doi.org/10.1016/j.neuropsychologia.2016.07.001.
156. Yan H, Liu C, Yu T, Yu K, Xu C, Wang X, Ni D, Li Y. 2019. Mirth and laughter induced by electrical stimulation of the posterior insula. Journal of Clinical Neuroscience. 61:269–271. doi:10.1016/j.jocn.2018.11.029. http://dx.doi.org/10.1016/j.jocn.2018.11.029.
157. Arroyo S, Lesser RP, Gordon B, Uematsu S, Hart J, Schwerdt P, Andreasson K, Fisher RS. 1993. Mirth, laughter and gelastic seizures. Brain. 116(4):757–780. doi:10.1093/brain/116.4.757. http://dx.doi.org/10.1093/brain/116.4.757.
158. Satow T. 2003. Mirth and laughter arising from human temporal cortex. Journal of Neurology, Neurosurgery & Psychiatry. 74(7):1004–1005. doi:10.1136/jnnp.74.7.1004. http://dx.doi.org/10.1136/jnnp.74.7.1004.
159. Yamao Y, Matsumoto R, Kunieda T, Shibata S, Shimotake A, Kikuchi T, Satow T, Mikuni N, Fukuyama H, Ikeda A, et al. 2015. Neural correlates of mirth and laughter: A direct electrical cortical stimulation study. Cortex. 66:134–140. doi:10.1016/j.cortex.2014.11.008. http://dx.doi.org/10.1016/j.cortex.2014.11.008.
160. Okun MS, Bowers D, Springer U, Shapira NA, Malone D, Rezai AR, Nuttin B, Heilman KM, Morecraft RJ, Rasmussen SA, et al. 2004. What’s in a “Smile?” Intra-operative Observations of Contralateral Smiles Induced by Deep Brain Stimulation. Neurocase. 10(4):271–279. doi:10.1080/13554790490507632. http://dx.doi.org/10.1080/13554790490507632.
161. Haq IU, Foote KD, Goodman WG, Wu SS, Sudhyadhom A, Ricciuti N, Siddiqui MS, Bowers D, Jacobson CE, Ward H, et al. 2011. Smile and laughter induction and intraoperative predictors of response to deep brain stimulation for obsessive-compulsive disorder. NeuroImage. 54:S247–S255. doi:10.1016/j.neuroimage.2010.03.009. http://dx.doi.org/10.1016/j.neuroimage.2010.03.009.
162. Kuzniecky R, Guthrie B, Mountz J, Bebin M, Faught E, Gilliam F, Liu H. 1997. Intrinsic epileptogenesis of hypothalamic hamartomas in gelastic epilepsy. Annals of Neurology. 42(1):60–67. doi:10.1002/ana.410420111. http://dx.doi.org/10.1002/ana.410420111.
163. Ruder L, Arber S. 2019. Brainstem Circuits Controlling Action Diversification. Annu Rev Neurosci. 42(1):485–504. doi:10.1146/annurev-neuro-070918-050201. http://dx.doi.org/10.1146/annurev-neuro-070918-050201.
164. Roh J, Cheung VCK, Bizzi E. 2011. Modules in the brain stem and spinal cord underlying motor behaviors. Journal of Neurophysiology. 106(3):1363–1378. doi:10.1152/jn.00842.2010. http://dx.doi.org/10.1152/jn.00842.2010.
165. Saper CB, Lumsden AGS, Richerson GB. 2013. The Sensory, Motor, and Reflex Functions of the Brain Stem. In: Principles of Neural Science, Fifth Edition. McGraw Hill Professional. p. 1019–1037. https://books.google.com/books/about/Principles_of_Neural_Science_Fifth_Editi.html?id=s64z-LdAIsEC&redir_esc=y.
166. Bizzi E, Cheung VCK, d’Avella A, Saltiel P, Tresch M. 2008. Combining modules for movement. Brain Research Reviews. 57(1):125–133. doi:10.1016/j.brainresrev.2007.08.004. http://dx.doi.org/10.1016/j.brainresrev.2007.08.004.
167. d’Avella A, Saltiel P, Bizzi E. 2003. Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci. 6(3):300–308. doi:10.1038/nn1010. http://dx.doi.org/10.1038/nn1010.
168. Leiras R, Cregg JM, Kiehn O. 2022. Brainstem Circuits for Locomotion. Annu Rev Neurosci. 45(1):63–85. doi:10.1146/annurev-neuro-082321-025137. http://dx.doi.org/10.1146/annurev-neuro-082321-025137.
169. Romano D, Donati E, Benelli G, Stefanini C. 2018. A review on animal–robot interaction: from bio-hybrid organisms to mixed societies. Biol Cybern. 113(3):201–225. doi:10.1007/s00422-018-0787-5. http://dx.doi.org/10.1007/s00422-018-0787-5.
170. Beissner F, Meissner K, Bar K-J, Napadow V. 2013. The Autonomic Brain: An Activation Likelihood Estimation Meta-Analysis for Central Processing of Autonomic Function. Journal of Neuroscience. 33(25):10503–10511. doi:10.1523/jneurosci.1103-13.2013. http://dx.doi.org/10.1523/jneurosci.1103-13.2013.
171. Silvani A, Calandra-Buonaura G, Dampney RAL, Cortelli P. 2016. Brain–heart interactions: physiology and clinical implications. Phil Trans R Soc A. 374(2067):20150181. doi:10.1098/rsta.2015.0181. http://dx.doi.org/10.1098/rsta.2015.0181.
172. Bianchi AL, Gestreau C. 2009. The brainstem respiratory network: An overview of a half century of research. Respiratory Physiology & Neurobiology. 168(1–2):4–12. doi:10.1016/j.resp.2009.04.019. http://dx.doi.org/10.1016/j.resp.2009.04.019.
173. PINNEO LR. 1966. Electrical Control of Behaviour by Programmed Stimulation of the Brain. Nature. 211(5050):705–708. doi:10.1038/211705a0. http://dx.doi.org/10.1038/211705a0.
174. Pinneo LR, Kaplan JN, Elpel EA, Reynolds PC, GLICK JH. 1972. Experimental Brain Prosthesis for Stroke. Stroke. 3(1):16–26. doi:10.1161/01.str.3.1.16. http://dx.doi.org/10.1161/01.str.3.1.16.
175. Shik ML, Severin FV, Orlovsky GN. 1966. CONTROL OF WALKING AND RUNNING BY MEANS OF ELECTRICAL STIMULATION OF THE MID-BRAIN. BIOPHYSICS. 11(4):659–666. https://elibrary.ru/item.asp?id=30846631.
176. Fridman OF. 1969. A review of soviet papers. Electroencephalography and Clinical Neurophysiology. 26(5):541–550. doi:10.1016/0013-4694(69)90135-7. http://dx.doi.org/10.1016/0013-4694(69)90135-7.
177. Eidelberg E. 1981. LOCOMOTOR CONTROL IN MACAQUE MONKEYS. In: Regulatory Functions of the CNS Principles of Motion and Organization. Elsevier. p. 187–188. http://dx.doi.org/10.1016/b978-0-08-026814-9.50029-6.
178. Skinner RD, Garcia-Rill E. 1984. The mesencephalic locomotor region (MLR) in the rat. Brain Research. 323(2):385–389. doi:10.1016/0006-8993(84)90319-6. http://dx.doi.org/10.1016/0006-8993(84)90319-6.
179. Caggiano V, Leiras R, Goñi-Erro H, Masini D, Bellardita C, Bouvier J, Caldeira V, Fisone G, Kiehn O. 2018. Midbrain circuits that set locomotor speed and gait selection. Nature. 553(7689):455–460. doi:10.1038/nature25448. http://dx.doi.org/10.1038/nature25448.
180. Noga BR, Whelan PJ. 2022. The Mesencephalic Locomotor Region: Beyond Locomotor Control. Front Neural Circuits. 16. doi:10.3389/fncir.2022.884785. http://dx.doi.org/10.3389/fncir.2022.884785.
181. Kobayashi N, Yoshida M, Matsumoto N, Uematsu K. 2009. Artificial control of swimming in goldfish by brain stimulation: Confirmation of the midbrain nuclei as the swimming center. Neuroscience Letters. 452(1):42–46. doi:10.1016/j.neulet.2009.01.035. http://dx.doi.org/10.1016/j.neulet.2009.01.035.
182. Peng Y, Wu Y, Yang Y, Huang R, Wu C, Qi X, Liu Z, Jiang B, Liu Y. 2011. Study on the control of biological behavior on carp induced by electrophysiological stimulation in the corpus cerebelli. In: Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. IEEE. p. 502–505. http://dx.doi.org/10.1109/emeit.2011.6022965.
183. Wenbo W, Ce G, Zhendong D. 2009. Locomotion Elicited by Electrical Stimulation in the Midbrain of the Lizard Gekko gecko. Intelligent Unmanned Systems: Theory and Applications.:145–153. https://link.springer.com/chapter/10.1007/978-3-642-00264-9_9.
184. Yang J, Huai R, Wang H, Li W, Wang Z, Sui M, Su X. 2017. Global Positioning System-Based Stimulation for Robo-Pigeons in Open Space. Front Neurorobot. 11. doi:10.3389/fnbot.2017.00040. http://dx.doi.org/10.3389/fnbot.2017.00040.
185. Holzer R, Shimoyama I. Locomotion control of a bio-robotic system via electric stimulation. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS ’97. Vol. 3. IEEE. p. 1514–1519. http://dx.doi.org/10.1109/iros.1997.656559.
186. Talwar SK, Xu S, Hawley ES, Weiss SA, Moxon KA, Chapin JK. 2002. Rat navigation guided by remote control. Nature. 417(6884):37–38. doi:10.1038/417037a. http://dx.doi.org/10.1038/417037a.
187. Wang Y, Lu M, Wu Z, Tian L, Xu K, Zheng X, Pan G. 2015. Visual Cue-Guided Rat Cyborg for Automatic Navigation [Research Frontier]. IEEE Comput Intell Mag. 10(2):42–52. doi:10.1109/mci.2015.2405318. http://dx.doi.org/10.1109/mci.2015.2405318.
188. Yu Y, Pan G, Gong Y, Xu K, Zheng N, Hua W, Zheng X, Wu Z. 2016. Intelligence-Augmented Rat Cyborgs in Maze Solving. Zhang N, editor. PLoS ONE. 11(2):e0147754. doi:10.1371/journal.pone.0147754. http://dx.doi.org/10.1371/journal.pone.0147754.
189. Delgado JMR. 1959. PROLONGED STIMULATION OF BRAIN IN AWAKE MONKEYS. Journal of Neurophysiology. 22(4):458–475. doi:10.1152/jn.1959.22.4.458. http://dx.doi.org/10.1152/jn.1959.22.4.458.
190. Delgado JMR. 1967. Limbic System and Free Behavior. In: Progress in Brain Research. Elsevier. p. 48–68. http://dx.doi.org/10.1016/s0079-6123(08)63093-9.
191. Bassal M, Bianchi AL. 1982. Inspiratory onset or termination induced by electrical stimulation of the brain. Respiration Physiology. 50(1):23–40. doi:10.1016/0034-5687(82)90004-4. http://dx.doi.org/10.1016/0034-5687(82)90004-4.
192. Bailey P, Sweet WH. 1940. EFFECTS ON RESPIRATION, BLOOD PRESSURE AND GASTRIC MOTILITY OF STIMULATION OF ORBITAL SURFACE OF FRONTAL LOBE. Journal of Neurophysiology. 3(3):276–281. doi:10.1152/jn.1940.3.3.276. http://dx.doi.org/10.1152/jn.1940.3.3.276.
193. CHAPMAN WP. 1949. FRONTAL LOBOTOMY AND ELECTRICAL STIMULATION OF ORBITAL SURFACE OF FRONTAL LOBES. Arch NeurPsych. 62(6):701. doi:10.1001/archneurpsyc.1949.02310180002001. http://dx.doi.org/10.1001/archneurpsyc.1949.02310180002001.
194. Pool JL, Ransohoff J. 1949. AUTONOMIC EFFECTS ON STIMULATING ROSTRAL PORTION OF CINGULATE GYRI IN MAN. Journal of Neurophysiology. 12(6):385–392. doi:10.1152/jn.1949.12.6.385. http://dx.doi.org/10.1152/jn.1949.12.6.385.
195. Kaada BR, Andersen P, Jansen J Jr. 1954. Stimulation of the Amvgdaloid Nuclear Comxllex in Unanesthetized Cats. Neurology. 4(1):48–48. doi:10.1212/wnl.4.1.48. http://dx.doi.org/10.1212/wnl.4.1.48.
196. Kaada BR, Pribram KH, Epstein JA. 1949. RESPIRATORY AND VASCULAR RESPONSES IN MONKEYS FROM TEMPORAL POLE, INSULA, ORBITAL SURFACE AND CINGULATE GYRUS: A PRELIMINARY REPORT. Journal of Neurophysiology. 12(5):347–356. doi:10.1152/jn.1949.12.5.347. http://dx.doi.org/10.1152/jn.1949.12.5.347.
197. Malmo RB, Mundl WJ. 1983. Cardiovascular and respiratory responses to electrical stimulation of the midbrain in the rat. International Journal of Psychophysiology. 1(1):75–81. doi:10.1016/0167-8760(83)90026-0. http://dx.doi.org/10.1016/0167-8760(83)90026-0.
198. Oppenheimer SM, Cechetto DF. 1990. Cardiac chronotropic organization of the rat insular cortex. Brain Research. 533(1):66–72. doi:10.1016/0006-8993(90)91796-j. http://dx.doi.org/10.1016/0006-8993(90)91796-j.
199. Oppenheimer SM, Wilson JX, Guiraudon C, Cechetto DF. 1991. Insular cortex stimulation produces lethal cardiac arrhythmias: a mechanism of sudden death? Brain Research. 550(1):115–121. doi:10.1016/0006-8993(91)90412-o. http://dx.doi.org/10.1016/0006-8993(91)90412-o.
200. Korteweg GCJ, Boeles JThF, Cate JT. 1957. INFLUENCE OF STIMULATION OF SOME SUBCORTICAL AREAS ON ELECTROCARDIOGRAM. Journal of Neurophysiology. 20(1):100–107. doi:10.1152/jn.1957.20.1.100. http://dx.doi.org/10.1152/jn.1957.20.1.100.
201. Weinberg SJ, Fuster JM. 1960. Electrocardiographic changes produced by localized hypothalamic stimulations. Annals of Internal Medicine. 53(2):332–341. https://www.acpjournals.org/doi/abs/10.7326/0003-4819-53-2-332.
202. Melville KI, Blum B, Shister HE, Silver MD. 1963. Cardiac ischemic changes and arrhythmias induced by hypothalamic stimulation. The American Journal of Cardiology. 12(6):781–791. doi:10.1016/0002-9149(63)90281-9. http://dx.doi.org/10.1016/0002-9149(63)90281-9.
203. Miller AJ. 1972. Characteristics of the swallowing reflex induced by peripheral nerve and brain stem stimulation. Experimental Neurology. 34(2):210–222. doi:10.1016/0014-4886(72)90168-9. http://dx.doi.org/10.1016/0014-4886(72)90168-9.
204. Nonaka S, Unno T, Ohta Y, Mori S. 1990. Sneeze-evoking region within the brainstem. Brain Research. 511(2):265–270. doi:10.1016/0006-8993(90)90171-7. http://dx.doi.org/10.1016/0006-8993(90)90171-7.
205. MORI M, SAKAI Y. 1972. Re-Examination of Centrally-Induced Cough in Cats Using A Micro-Stimulation Technique. Japanese Journal of Pharmacology. 22(5):635–643. doi:10.1016/s0021-5198(19)31627-0. http://dx.doi.org/10.1016/s0021-5198(19)31627-0.
206. WANG SC. 1950. THE VOMITING CENTER. Arch NeurPsych. 63(6):928. doi:10.1001/archneurpsyc.1950.02310240087005. http://dx.doi.org/10.1001/archneurpsyc.1950.02310240087005.
207. Holstege G, Griffiths D, De Wall H, Dalm E. 1986. Anatomical and physiological observations on suprapinal control of bladder and urethral sphincter muscles in the cat. J of Comparative Neurology. 250(4):449–461. doi:10.1002/cne.902500404. http://dx.doi.org/10.1002/cne.902500404.
208. Okada H, Fukuda H, Yamane M. 1976. イヌの橋排便反射中枢の所在について. 自律神経.:24–31. https://www.jstage.jst.go.jp/article/ans/13/1/13_1/_article/-char/ja.
209. Fukuda H, Fukai K, Yamane M, Okada H. 1977. イヌの橋排便反射中枢の活動について. 日本生理学雑誌.:143. http://physiology.jp/wp-content/uploads/2023/06/1977_3906.pdf.
210. Craig AD (Bud). 2003. P<scp>AIN</scp> M<scp>ECHANISMS</scp>: Labeled Lines Versus Convergence in Central Processing. Annu Rev Neurosci. 26(1):1–30. doi:10.1146/annurev.neuro.26.041002.131022. http://dx.doi.org/10.1146/annurev.neuro.26.041002.131022.
211. Iannetti GD, Mouraux A. 2010. From the neuromatrix to the pain matrix (and back). Exp Brain Res. 205(1):1–12. doi:10.1007/s00221-010-2340-1. http://dx.doi.org/10.1007/s00221-010-2340-1.
212. McBenedict B, Petrus D, Pires MP, Pogodina A, Arrey Agbor DB, Ahmed YA, Castro Ceron JI, Balaji A, Abrahão A, Lima Pessôa B. 2024 Apr 18. The Role of the Insula in Chronic Pain and Associated Structural Changes: An Integrative Review. Cureus. doi:10.7759/cureus.58511. http://dx.doi.org/10.7759/cureus.58511.
213. Critchley HD, Harrison NA. 2013. Visceral Influences on Brain and Behavior. Neuron. 77(4):624–638. doi:10.1016/j.neuron.2013.02.008. http://dx.doi.org/10.1016/j.neuron.2013.02.008.
214. Chapman HA, Anderson AK. 2012. Understanding disgust. Annals of the New York Academy of Sciences. 1251(1):62–76. doi:10.1111/j.1749-6632.2011.06369.x. http://dx.doi.org/10.1111/j.1749-6632.2011.06369.x.
215. Wicker B, Keysers C, Plailly J, Royet J-P, Gallese V, Rizzolatti G. 2003. Both of Us Disgusted in My Insula. Neuron. 40(3):655–664. doi:10.1016/s0896-6273(03)00679-2. http://dx.doi.org/10.1016/s0896-6273(03)00679-2.
216. Sprouse-Blum AS, Smith G, Sugai D, Parsa, FD. 2010. Understanding Endorphins and Their Importance in Pain Management. Hawai‘i Medical Journal. 69(3):70–71. https://pmc.ncbi.nlm.nih.gov/articles/PMC3104618/.
217. Bloom F, Battenberg E, Rossier J, Ling N, Guillemin R. 1978. Neurons containing beta-endorphin in rat brain exist separately from those containing enkephalin: immunocytochemical studies. Proc Natl Acad Sci USA. 75(3):1591–1595. doi:10.1073/pnas.75.3.1591. http://dx.doi.org/10.1073/pnas.75.3.1591.
218. Richardson DE. 1982. Analgesia Produced by Stimulation of Various Sites in the Human Beta-Endorphin System. Stereotact Funct Neurosurg. 45(1–2):116–122. doi:10.1159/000101587. http://dx.doi.org/10.1159/000101587.
219. Hassler R, Riechert T. 1959. Klinische und anatomische Befunde bei stereotaktischen Schmerzoperationen im Thalamus. Archiv f�r Psychiatrie und Zeitschrift f d ges Neurologie. 200(1):93–122. doi:10.1007/bf00361358. http://dx.doi.org/10.1007/bf00361358.
220. HALLIDAY AM, LOGUE V. 1972. Painful sensations evoked by electrical stimulation in the thalamus. In: Somjen GG, editor. Neurophysiology Studied in Man. Excerpta Medica. p. 221–230. https://archive.org/details/isbn_9021901846/.
221. Dostrovsky JO, Wells FEB, Tasker RR. 1992. Pain sensations evoked by stimulation in human thalamus. In: Inoki R, Shigenaga Y, Tohyama M, editors. Processing and Inhibition of Nociceptive Information. Excerpta Medica. p. 115–120. https://books.google.com/books/about/Processing_and_Inhibition_of_Nociceptive.html?id=P9lqAAAAMAAJ&redir_esc=y.
222. Dostrovsky JO, Manduch M, Davis KD, Tasker RR, Lozanob AM. 2000. Thalamic Stimulation-Evoked Pain and Temperature Sites in Pain and Non-Pain Patients. In: Devor M, Rowbotham MC, Wiesenfeld-Hallin Z, editors. Proceedings of the 9th World Congress on Pain. IASP Press. p. 419–425. https://openlibrary.org/books/OL18308773M/Proceedings_of_the_9th_World_Congress_on_Pain.
223. Lenz FA, Seike M, Richardson RT, Lin YC, Baker FH, Khoja I, Jaeger CJ, Gracely RH. 1993. Thermal and pain sensations evoked by microstimulation in the area of human ventrocaudal nucleus. Journal of Neurophysiology. 70(1):200–212. doi:10.1152/jn.1993.70.1.200. http://dx.doi.org/10.1152/jn.1993.70.1.200.
224. Ohara S, Lenz FA. 2003. Medial Lateral Extent of Thermal and Pain Sensations Evoked By Microstimulation in Somatic Sensory Nuclei of Human Thalamus. Journal of Neurophysiology. 90(4):2367–2377. doi:10.1152/jn.00450.2003. http://dx.doi.org/10.1152/jn.00450.2003.
225. Ostrowsky K, Isnard J, Ryvlin P, Guénot M, Fischer C, Mauguière F. 2000. Functional Mapping of the Insular Cortex: Clinical Implication in Temporal Lobe Epilepsy. Epilepsia. 41(6):681–686. doi:10.1111/j.1528-1157.2000.tb00228.x. http://dx.doi.org/10.1111/j.1528-1157.2000.tb00228.x.
226. Ostrowsky K. 2002. Representation of Pain and Somatic Sensation in the Human Insula: a Study of Responses to Direct Electrical Cortical Stimulation. Cerebral Cortex. 12(4):376–385. doi:10.1093/cercor/12.4.376. http://dx.doi.org/10.1093/cercor/12.4.376.
227. Mazzola L, Mauguière F, Isnard J. 2017. Electrical Stimulations of the Human Insula: Their Contribution to the Ictal Semiology of Insular Seizures. Journal of Clinical Neurophysiology. 34(4):307–314. doi:10.1097/wnp.0000000000000382. http://dx.doi.org/10.1097/wnp.0000000000000382.
228. Afif A, Hoffmann D, Minotti L, Benabid AL, Kahane P. 2008. Middle short gyrus of the insula implicated in pain processing. Pain. 138(3):546–555. doi:10.1016/j.pain.2008.02.004. http://dx.doi.org/10.1016/j.pain.2008.02.004.
229. Stephani C, Fernandez-Baca Vaca G, Maciunas R, Koubeissi M, Lüders HO. 2010. Functional neuroanatomy of the insular lobe. Brain Struct Funct. 216(2):137–149. doi:10.1007/s00429-010-0296-3. http://dx.doi.org/10.1007/s00429-010-0296-3.
230. Mazzola L, Isnard J, Mauguière F. 2005. Somatosensory and Pain Responses to Stimulation of the Second Somatosensory Area (SII) in Humans. A Comparison with SI and Insular Responses. Cerebral Cortex. 16(7):960–968. doi:10.1093/cercor/bhj038. http://dx.doi.org/10.1093/cercor/bhj038.
231. Mazzola L, Isnard J, Peyron R, Mauguière F. 2011. Stimulation of the human cortex and the experience of pain: Wilder Penfield’s observations revisited. Brain. 135(2):631–640. doi:10.1093/brain/awr265. http://dx.doi.org/10.1093/brain/awr265.
232. PENFIELD W, FAULK ME JR. 1955. THE INSULA. Brain. 78(4):445–470. doi:10.1093/brain/78.4.445. http://dx.doi.org/10.1093/brain/78.4.445.
233. Krolak‐Salmon P, Hénaff M, Isnard J, Tallon‐Baudry C, Guénot M, Vighetto A, Bertrand O, Mauguière F. 2003. An attention modulated response to disgust in human ventral anterior insula. Annals of Neurology. 53(4):446–453. doi:10.1002/ana.10502. http://dx.doi.org/10.1002/ana.10502.
234. Caruana F, Jezzini A, Sbriscia-Fioretti B, Rizzolatti G, Gallese V. 2011. Emotional and Social Behaviors Elicited by Electrical Stimulation of the Insula in the Macaque Monkey. Current Biology. 21(3):195–199. doi:10.1016/j.cub.2010.12.042. http://dx.doi.org/10.1016/j.cub.2010.12.042.
235. Van Buren JM. 1963. The abdominal aura a study of abdominal sensations occurring in epilepsy and produced by depth stimulation. Electroencephalography and Clinical Neurophysiology. 15(1):1–19. doi:10.1016/0013-4694(63)90035-x. http://dx.doi.org/10.1016/0013-4694(63)90035-x.
236. Mulak A, Kahane P, Hoffmann D, Minotti L, Bonaz B. 2008. Brain mapping of digestive sensations elicited by cortical electrical stimulations. Neurogastroenterology Motil. 20(6):588–596. doi:10.1111/j.1365-2982.2007.01066.x. http://dx.doi.org/10.1111/j.1365-2982.2007.01066.x.
237. Soulier H, Mauguière F, Catenoix H, Montavont A, Isnard J, Hermier M, Guenot M, Rheims S, Mazzola L. 2022. Visceral and emotional responses to direct electrical stimulations of the cortex. Ann Clin Transl Neurol. 10(1):5–17. doi:10.1002/acn3.51694. http://dx.doi.org/10.1002/acn3.51694.
238. Heath RG, Mickle WA. 1960. Evaluation of Seven Years’ Experience with Depth Electrode studies in Human Patient. In: Ramey ER, O’Doherty DS, editors. Electrical Stuedies of the Unanesthetized Brain. Literary Licensing, LLC. p. 214–247. https://books.google.com/books/about/Electrical_Studies_on_the_Unanesthetized.html?id=k81rAAAAMAAJ&redir_esc=y.
239. Delgado JMR, Obrador S, Martin-Rodriguez JG. 1972. Two-way Radio Communication with the Brain in Psychosurgical Patients. In: Laitinen LauriV, Livingston KE, editors. Surgical Approaches in Psychiatry. University Park Press. p. 215–223. https://openlibrary.org/books/OL14143069M/Surgical_approaches_in_psychiatry.
240. Obrador S, Delgado JMR, Martin-Rodriguez JG. 1974. The future of functional neurosurgery. In: Sano K, Ishii S, Vay DL, editors. Recent progress in neurological surgery. Excerpta Medica. p. 265–269. https://books.google.com/books/about/Recent_Progress_in_Neurological_Surgery.html?id=0XxsAAAAMAAJ&redir_esc=y.
241. Gol A. 1967. Relief of pain by electrical stimulation of the septal area. Journal of the Neurological Sciences. 5(1):115–120. doi:10.1016/0022-510x(67)90012-3. http://dx.doi.org/10.1016/0022-510x(67)90012-3.
242. Schvarcz JR. 1993. Long-Term Results of Stimulation of the Septal Area for Relief of Neurogenic Pain. In: Advances in Stereotactic and Functional Neurosurgery 10. Springer Vienna. p. 154–155. http://dx.doi.org/10.1007/978-3-7091-9297-9_35.
243. Breglio V, Chris Anderson D, Kent Merrill H. 1970. Alteration in footshock threshold by low-level septal brain stimulation. Physiology & Behavior. 5(7):715–719. doi:10.1016/0031-9384(70)90268-4. http://dx.doi.org/10.1016/0031-9384(70)90268-4.
244. Reynolds DV. 1969. Surgery in the Rat during Electrical Analgesia Induced by Focal Brain Stimulation. Science. 164(3878):444–445. doi:10.1126/science.164.3878.444. http://dx.doi.org/10.1126/science.164.3878.444.
245. Mayer DJ, Wolfle TL, Akil H, Carder B, Liebeskind JC. 1971. Analgesia from Electrical Stimulation in the Brainstem of the Rat. Science. 174(4016):1351–1354. doi:10.1126/science.174.4016.1351. http://dx.doi.org/10.1126/science.174.4016.1351.
246. Liebeskind JC, Guilbaud G, Besson J-M, Oliveras J-L. 1973. Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: behavioral observations and inhibitory effects on spinal cord interneurons. Brain Research. 50(2):441–446. doi:10.1016/0006-8993(73)90748-8. http://dx.doi.org/10.1016/0006-8993(73)90748-8.
247. Richardson DE, Akil H. 1977. Pain reduction by electrical brain stimulation in man. Journal of Neurosurgery. 47(2):178–183. doi:10.3171/jns.1977.47.2.0178. http://dx.doi.org/10.3171/jns.1977.47.2.0178.
248. Richardson DE, Akil H. 1977. Pain reduction by electrical brain stimulation in man. Journal of Neurosurgery. 47(2):184–194. doi:10.3171/jns.1977.47.2.0184. http://dx.doi.org/10.3171/jns.1977.47.2.0184.
249. Hosobuchi Y, Adams JE, Linchitz R. 1977. Pain Relief by Electrical Stimulation of the Central Gray Matter in Humans and Its Reversal by Naloxone. Science. 197(4299):183–186. doi:10.1126/science.301658. http://dx.doi.org/10.1126/science.301658.
250. Young RF, Kroening R, Fulton W, Feldman RA, Chambi I. 1985. Electrical stimulation of the brain in treatment of chronic pain. Journal of Neurosurgery. 62(3):389–396. doi:10.3171/jns.1985.62.3.0389. http://dx.doi.org/10.3171/jns.1985.62.3.0389.
251. Olds J, Milner P. 1954. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology. 47(6):419–427. doi:10.1037/h0058775. http://dx.doi.org/10.1037/h0058775.
252. HEATH RG. 1963. ELECTRICAL SELF-STIMULATION OF THE BRAIN IN MAN. AJP. 120(6):571–577. doi:10.1176/ajp.120.6.571. http://dx.doi.org/10.1176/ajp.120.6.571.
253. HEATH RG. 1972. PLEASURE AND BRAIN ACTIVITY IN MAN. The Journal of Nervous and Mental Disease. 154(1):3–18. doi:10.1097/00005053-197201000-00002. http://dx.doi.org/10.1097/00005053-197201000-00002.
254. Morales I, Berridge KC. 2020. ‘Liking’ and ‘wanting’ in eating and food reward: Brain mechanisms and clinical implications. Physiology & Behavior. 227:113152. doi:10.1016/j.physbeh.2020.113152. http://dx.doi.org/10.1016/j.physbeh.2020.113152.
255. Zahm DS, Parsley KP, Schwartz ZM, Cheng AY. 2012. On lateral septum‐like characteristics of outputs from the accumbal hedonic “hotspot” of Peciña and Berridge with commentary on the transitional nature of basal forebrain “boundaries.” J of Comparative Neurology. 521(1):50–68. doi:10.1002/cne.23157. http://dx.doi.org/10.1002/cne.23157.
256. Kamali A, Sair HI, Blitz AM, Riascos RF, Mirbagheri S, Keser Z, Hasan KM. 2015. Revealing the ventral amygdalofugal pathway of the human limbic system using high spatial resolution diffusion tensor tractography. Brain Struct Funct. 221(7):3561–3569. doi:10.1007/s00429-015-1119-3. http://dx.doi.org/10.1007/s00429-015-1119-3.
257. Nieuwenhuys R, Geeraedts LMG, Veening JG. 1982. The medial forebrain bundle of the rat. I. General introduction. J of Comparative Neurology. 206(1):49–81. doi:10.1002/cne.902060106. http://dx.doi.org/10.1002/cne.902060106.
258. Wise RA. 2005. Forebrain substrates of reward and motivation. J of Comparative Neurology. 493(1):115–121. doi:10.1002/cne.20689. http://dx.doi.org/10.1002/cne.20689.
259. Sheehan TP, Chambers RA, Russell DS. 2004. Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Research Reviews. 46(1):71–117. doi:10.1016/j.brainresrev.2004.04.009. http://dx.doi.org/10.1016/j.brainresrev.2004.04.009.
260. Reppucci CJ, Petrovich GD. 2015. Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct Funct. 221(6):2937–2962. doi:10.1007/s00429-015-1081-0. http://dx.doi.org/10.1007/s00429-015-1081-0.
261. Behbehani M, Park M, Clement M. 1988. Interactions between the lateral hypothalamus and the periaqueductal gray. J Neurosci. 8(8):2780–2787. doi:10.1523/jneurosci.08-08-02780.1988. http://dx.doi.org/10.1523/jneurosci.08-08-02780.1988.
262. Reis FMCV, Maesta-Pereira S, Ollivier M, Schuette PJ, Sethi E, Miranda BA, Iniguez E, Chakerian M, Vaughn E, Sehgal M, et al. 2024. Control of feeding by a bottom-up midbrain-subthalamic pathway. Nat Commun. 15(1). doi:10.1038/s41467-024-46430-5. http://dx.doi.org/10.1038/s41467-024-46430-5.
263. Isaacson R. 2012. CHAPTER 1 The Structure of the limbic System. In: The Limbic System. Springer Science & Business Media. p. 1–55. https://books.google.com/books/about/The_Limbic_System.html?id=35bbBwAAQBAJ&redir_esc=y.
264. Sun N, Roberts L, Cassell MD. 1991. Rat central amygdaloid nucleus projections to the bed nucleus of the stria terminalis. Brain Research Bulletin. 27(5):651–662. doi:10.1016/0361-9230(91)90041-h. http://dx.doi.org/10.1016/0361-9230(91)90041-h.
265. Leonard CM, Scott JW. 1971. Origin and distribution of the amygdalofugal pathways in the rat: An experimental neuronatomical study. J of Comparative Neurology. 141(3):313–329. doi:10.1002/cne.901410304. http://dx.doi.org/10.1002/cne.901410304.
266. Avecillas-Chasin JM, Justo M, Levinson S, Koek R, Krahl SE, Chen JWY, Lee SJ, Langevin J-P, Bari A. 2020. Structural correlates of emotional response to electrical stimulation of the amygdala in subjects with PTSD. Brain Stimulation. 13(2):424–426. doi:10.1016/j.brs.2019.12.004. http://dx.doi.org/10.1016/j.brs.2019.12.004.
267. Heath RG. 1964. Pleasure Response of Human Subjects to Direct Stimulation of the Brain: Physiologic and Psychodynamic Considerations. In: Heath Robert Galbraith, editor. The Role of Pleasure in Behavior. Hoeber Medical Division, Harper & Row. p. 219–243. https://books.google.com/books/about/The_role_of_pleasure_in_behavior.html?id=BSN-AAAAMAAJ&redir_esc=y.
268. Bishop MP, Elder ST, Heath RG. 1963. Intracranial Self-Stimulation in Man. Science. 140(3565):394–396. doi:10.1126/science.140.3565.394. http://dx.doi.org/10.1126/science.140.3565.394.
269. HEATH RG, MONROE RR, MICKLE WA. 1955. STIMULATION OF THE AMYGDALOID NUCLEUS IN A SCHIZOPHRENIC PATIENT. AJP. 111(11):862–863. doi:10.1176/ajp.111.11.862. http://dx.doi.org/10.1176/ajp.111.11.862.
270. Heath RG. 1996. CORRELATION OF DEEP AND SURFACE RECORDINGS WITH EMOTIONAL BEHAVIOR. In: Exploring the Mind-brain Relationship. Moran Printing, Incorporated. p. 85–111. https://books.google.com/books/about/Exploring_the_mind_brain_relationship.html?id=s8RqAAAAMAAJ&redir_esc=y.
271. Mark VH, Ervin FR, Sweet WH. 1972. Deep Temporal Lobe Stimulation in Man. In: Advances in Behavioral Biology. Springer US. p. 485–507. http://dx.doi.org/10.1007/978-1-4615-8987-7_17.
272. Lanteaume L, Khalfa S, Regis J, Marquis P, Chauvel P, Bartolomei F. 2006. Emotion Induction After Direct Intracerebral Stimulations of Human Amygdala. Cerebral Cortex. 17(6):1307–1313. doi:10.1093/cercor/bhl041. http://dx.doi.org/10.1093/cercor/bhl041.
273. Synofzik M, Schlaepfer TE, Fins JJ. 2012. How Happy Is Too Happy? Euphoria, Neuroethics, and Deep Brain Stimulation of the Nucleus Accumbens. AJOB Neuroscience. 3(1):30–36. doi:10.1080/21507740.2011.635633. http://dx.doi.org/10.1080/21507740.2011.635633.
274. Kulisevsky J, Berthier ML, Gironell A, Pascual-Sedano B, Molet J, Parés P. 2002. Mania following deep brain stimulation for Parkinson’s disease. Neurology. 59(9):1421–1424. doi:10.1212/wnl.59.9.1421. http://dx.doi.org/10.1212/wnl.59.9.1421.
275. Herzog J, Reiff J, Krack P, Witt K, Schrader B, Müller D, Deuschl G. 2003. Manic episode with psychotic symptoms induced by subthalamic nucleus stimulation in a patient with Parkinson’s disease. Movement Disorders. 18(11):1382–1384. doi:10.1002/mds.10530. http://dx.doi.org/10.1002/mds.10530.
276. Kim JS, Kim HJ, Lee J-Y, Kim JM, Yun JY, Jeon BS. 2012. Hypomania Induced by Subthalamic Nucleus Stimulation in a Parkinson’s Disease Patient: Does It Suggest a Dysfunction of the Limbic Circuit? JMD. 5(1):14–17. doi:10.14802/jmd.12004. http://dx.doi.org/10.14802/jmd.12004.
277. Mandat TS, Hurwitz T, Honey CR. 2006. Hypomania as an adverse effect of subthalamic nucleus stimulation: report of two cases. Acta Neurochir (Wien). 148(8):895–898. doi:10.1007/s00701-006-0795-4. http://dx.doi.org/10.1007/s00701-006-0795-4.
278. Coenen VA, Honey CR, Hurwitz T, Rahman AA, McMaster J, Bürgel U, Mädler B. 2009. MEDIAL FOREBRAIN BUNDLE STIMULATION AS A PATHOPHYSIOLOGICAL MECHANISM FOR HYPOMANIA IN SUBTHALAMIC NUCLEUS DEEP BRAIN STIMULATION FOR PARKINSON’S DISEASE. Neurosurgery. 64(6):1106–1115. doi:10.1227/01.neu.0000345631.54446.06. http://dx.doi.org/10.1227/01.neu.0000345631.54446.06.
279. Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS, Malloy PF, Salloway SP, Okun MS, Goodman WK, Rasmussen SA. 2006. Three-Year Outcomes in Deep Brain Stimulation for Highly Resistant Obsessive–Compulsive Disorder. Neuropsychopharmacol. 31(11):2384–2393. doi:10.1038/sj.npp.1301165. http://dx.doi.org/10.1038/sj.npp.1301165.
280. Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F, Westenberg H, Bosch A, Schuurman R. 2010. Deep Brain Stimulation of the Nucleus Accumbens for Treatment-Refractory Obsessive-Compulsive Disorder. Arch Gen Psychiatry. 67(10):1061. doi:10.1001/archgenpsychiatry.2010.122. http://dx.doi.org/10.1001/archgenpsychiatry.2010.122.
281. Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, Joe AY, Kreft M, Lenartz D, Sturm V. 2007. Deep Brain Stimulation to Reward Circuitry Alleviates Anhedonia in Refractory Major Depression. Neuropsychopharmacol. 33(2):368–377. doi:10.1038/sj.npp.1301408. http://dx.doi.org/10.1038/sj.npp.1301408.
282. Schlaepfer TE, Bewernick BH, Kayser S, Mädler B, Coenen VA. 2013. Rapid Effects of Deep Brain Stimulation for Treatment-Resistant Major Depression. Biological Psychiatry. 73(12):1204–1212. doi:10.1016/j.biopsych.2013.01.034. http://dx.doi.org/10.1016/j.biopsych.2013.01.034.
283. Quaade F, Y�rnet K, Larsson S. 1974. Stereotaxic stimulation and electrocoagulation of the lateral hypothalamus in obese humans. Acta neurochir. 30(1–2):111–117. doi:10.1007/bf01405759. http://dx.doi.org/10.1007/bf01405759.
284. Panksepp J. 1998. Chapter 8: SEEKING Systems and Anticipatory States of the Nervous System. In: Affective Neuroscience. Oxford University Press. p. 144–163. https://books.google.com/books/about/Affective_Neuroscience.html?id=qqcRGagyEuAC&redir_esc=y.
285. Olds J. 1956. Pleasure Centers in the Brain. Sci Am. 195(4):105–117. doi:10.1038/scientificamerican1056-105. http://dx.doi.org/10.1038/scientificamerican1056-105.
286. Brady JV. 1961. Motivational-Emotinal Factors and Intracranial Self-Stimulation. In: Sheer DE, editor. Electrical Stimulation of the Brain. The University of Texas Press. p. 413–430. https://openlibrary.org/books/OL6246514M/Electrical_stimulation_of_the_brain.
287. Olds J. 1956. A preliminary mapping of electrical reinforcing effects in the rat brain. Journal of Comparative and Physiological Psychology. 49(3):281–285. doi:10.1037/h0041287. http://dx.doi.org/10.1037/h0041287.
288. Olds ME, Olds J. 1963. Approach‐avoidance analysis of rat diencephalon. J of Comparative Neurology. 120(2):259–295. doi:10.1002/cne.901200206. http://dx.doi.org/10.1002/cne.901200206.
289. Olds J. 1958. Self-Stimulation of the Brain. Science. 127(3294):315–324. doi:10.1126/science.127.3294.315. http://dx.doi.org/10.1126/science.127.3294.315.
290. Spies G. 1965. Food versus intracranial self-stimulation reinforcement in food-deprived rats. Journal of Comparative and Physiological Psychology. 60(2):153–157. doi:10.1037/h0022367. http://dx.doi.org/10.1037/h0022367.
291. Miliaressis E, Cardo B. 1973. Self-stimulationversus food reinforcement: Comparative study of two different nervous structures, the lateral hypothalamus and the ventral tegmental area of the mesencephalon. Brain Research. 57(1):75–83. doi:10.1016/0006-8993(73)90569-6. http://dx.doi.org/10.1016/0006-8993(73)90569-6.
292. Liebman JM, Mayer DJ, Liebeskind JC. 1973. Self-stimulation loci in the midbrain central gray matter of the rat. Behavioral Biology. 9(3):299–306. doi:10.1016/s0091-6773(73)80180-4. http://dx.doi.org/10.1016/s0091-6773(73)80180-4.
293. Jenkins OF, Atrens DM, Jackson DM. 1983. Self-stimulation of the nucleus accumbens and some comparisons with hypothalamic self-stimulation. Pharmacology Biochemistry and Behavior. 18(4):585–591. doi:10.1016/0091-3057(83)90285-x. http://dx.doi.org/10.1016/0091-3057(83)90285-x.
294. Pascoli V, Terrier J, Hiver A, Lüscher C. 2015. Sufficiency of Mesolimbic Dopamine Neuron Stimulation for the Progression to Addiction. Neuron. 88(5):1054–1066. doi:10.1016/j.neuron.2015.10.017. http://dx.doi.org/10.1016/j.neuron.2015.10.017.
295. Wurtz RH, Olds J. 1963. Amygdaloid stimulation and operant reinforcement in the rat. Journal of Comparative and Physiological Psychology. 56(6):941–949. doi:10.1037/h0042033. http://dx.doi.org/10.1037/h0042033.
296. Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S. 2016. Antagonistic negative and positive neurons of the basolateral amygdala. Nat Neurosci. 19(12):1636–1646. doi:10.1038/nn.4414. http://dx.doi.org/10.1038/nn.4414.
297. Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S. 2017. Basolateral to Central Amygdala Neural Circuits for Appetitive Behaviors. Neuron. 93(6):1464-1479.e5. doi:10.1016/j.neuron.2017.02.034. http://dx.doi.org/10.1016/j.neuron.2017.02.034.
298. UMEMOTO M, KIDO R. 1967. FEEDING RESPONSES ELICITED BY THE ELECTRICAL STIMULATION OF LATERAL HYPOTHALAMUS IN THE CAT. Jpn Psychol Res. 9(1):14–19. doi:10.4992/psycholres1954.9.14. http://dx.doi.org/10.4992/psycholres1954.9.14.
299. Steinbaum EA, Miller NE. 1965. Obesity from eating elicited by daily stimulation of hypothalamus. American Journal of Physiology-Legacy Content. 208(1):1–5. doi:10.1152/ajplegacy.1965.208.1.1. http://dx.doi.org/10.1152/ajplegacy.1965.208.1.1.
300. Roberts WW, Steinberg ML, Means LW. 1967. Hypothalamic mechanisms for sexual, aggressive, and other motivational behaviors in the opossum, Didelphis virginiana. Journal of Comparative and Physiological Psychology. 64(1):1–15. doi:10.1037/h0024805. http://dx.doi.org/10.1037/h0024805.
301. Montgomery RB, Singer G. 1975. Functional relationship of lateral hypothalamus and amygdala in control of eating. Pharmacology Biochemistry and Behavior. 3(5):905–907. doi:10.1016/0091-3057(75)90125-2. http://dx.doi.org/10.1016/0091-3057(75)90125-2.
302. Waldbillig RJ. 1975. Attack, eating, drinking, and gnawing elicited by electrical stimulation of rat mesencephalon and pons. Journal of Comparative and Physiological Psychology. 89(3):200–212. doi:10.1037/h0076808. http://dx.doi.org/10.1037/h0076808.
303. Altman JL, Wishart TB. 1971. Motivated feeding behavior elicited by electrical stimulation of the septum. Physiology & Behavior. 6(2):105–109. doi:10.1016/0031-9384(71)90076-x. http://dx.doi.org/10.1016/0031-9384(71)90076-x.
304. van der Plasse G, Schrama R, van Seters SP, Vanderschuren LJMJ, Westenberg HGM. 2012. Deep Brain Stimulation Reveals a Dissociation of Consummatory and Motivated Behaviour in the Medial and Lateral Nucleus Accumbens Shell of the Rat. Zhuang X, editor. PLoS ONE. 7(3):e33455. doi:10.1371/journal.pone.0033455. http://dx.doi.org/10.1371/journal.pone.0033455.
305. Robinson BW, Mishkin M. 1968. Alimentary responses to forebrain stimulation in monkeys. Exp Brain Res. 4(4):330–366. doi:10.1007/bf00235700. http://dx.doi.org/10.1007/bf00235700.
306. Hutchinson RR, Renfrew JW. 1966. Stalking attack and eating behaviors elicited from the same sites in the hypothalamus. Journal of Comparative and Physiological Psychology. 61(3):360–367. doi:10.1037/h0023250. http://dx.doi.org/10.1037/h0023250.
307. Greer MA. 1955. Suggestive Evidence of a Primary “Drinking Center” in Hypothalamus of the Rat. Experimental Biology and Medicine. 89(1):59–62. doi:10.3181/00379727-89-21716. http://dx.doi.org/10.3181/00379727-89-21716.
308. Tenen SS, Miller NE. 1964. Strength of electrical stimulation of lateral hypothalamus, food deprivation and tolerance for quinine in food. Journal of Comparative and Physiological Psychology. 58(1):55–62. doi:10.1037/h0043359. http://dx.doi.org/10.1037/h0043359.
309. Mogenson GJ, Stevenson JAF. 1966. Drinking and self-stimulation with electrical stimulation of the lateral hypothalamus. Physiology & Behavior. 1(3–4):251-IN9. doi:10.1016/0031-9384(66)90013-8. http://dx.doi.org/10.1016/0031-9384(66)90013-8.
310. Singer G, Montgomery RB. 1969. Functional relationship of lateral hypothalamus and amygdala in control of drinking. Physiology & Behavior. 4(4):505–507. doi:10.1016/0031-9384(69)90145-0. http://dx.doi.org/10.1016/0031-9384(69)90145-0.
311. Roberts WW, Carey RJ. 1965. Rewarding effect of performance of gnawing aroused by hypothalamic stimulation in the rat. Journal of Comparative and Physiological Psychology. 59(3):317–324. doi:10.1037/h0022030. http://dx.doi.org/10.1037/h0022030.
312. Herberg LJ, Blundell JE. 1967. Lateral Hypothalamus: Hoarding Behavior Elicited by Electrical Stimulation. Science. 155(3760):349–350. doi:10.1126/science.155.3760.349. http://dx.doi.org/10.1126/science.155.3760.349.
313. Phillips AG, Cox VC, Kakolewski JW, Valenstein ES. 1969. Object-Carrying by Rats: An Approach to the Behavior Produced by Brain Stimulation. Science. 166(3907):903–905. doi:10.1126/science.166.3907.903. http://dx.doi.org/10.1126/science.166.3907.903.
314. Sesia T, Temel Y, Lim LW, Blokland A, Steinbusch HWM, Visser-Vandewalle V. 2008. Deep brain stimulation of the nucleus accumbens core and shell: Opposite effects on impulsive action. Experimental Neurology. 214(1):135–139. doi:10.1016/j.expneurol.2008.07.015. http://dx.doi.org/10.1016/j.expneurol.2008.07.015.
315. Goldstein JM, Siegel J. 1980. Suppression of attack behavior in cats by stimulation of ventral tegmental area and nucleus accumbens. Brain Research. 183(1):181–192. doi:10.1016/0006-8993(80)90128-6. http://dx.doi.org/10.1016/0006-8993(80)90128-6.
316. Panksepp J. 1998. Chapter 10: Nature Red in Tooth and Claw: The Neurobiological Sources of Rage and Anger. In: Affective Neuroscience. Oxford University Press. p. 187–205. https://books.google.com/books/about/Affective_Neuroscience.html?id=qqcRGagyEuAC&redir_esc=y.
317. Haller J. 2018. The role of central and medial amygdala in normal and abnormal aggression: A review of classical approaches. Neuroscience & Biobehavioral Reviews. 85:34–43. doi:10.1016/j.neubiorev.2017.09.017. http://dx.doi.org/10.1016/j.neubiorev.2017.09.017.
318. de Molina AF, Hunsperger RW. 1962. Organization of the subcortical system governing defence and flight reactions in the cat. The Journal of Physiology. 160(2):200–213. doi:10.1113/jphysiol.1962.sp006841. http://dx.doi.org/10.1113/jphysiol.1962.sp006841.
319. Haller J. 2013. The neurobiology of abnormal manifestations of aggression—A review of hypothalamic mechanisms in cats, rodents, and humans. Brain Research Bulletin. 93:97–109. doi:10.1016/j.brainresbull.2012.10.003. http://dx.doi.org/10.1016/j.brainresbull.2012.10.003.
320. Siegel A, Victoroff J. 2009. Understanding human aggression: New insights from neuroscience. International Journal of Law and Psychiatry. 32(4):209–215. doi:10.1016/j.ijlp.2009.06.001. http://dx.doi.org/10.1016/j.ijlp.2009.06.001.
321. Meloy RJ. 1988. CHAPTER 6: Modes of Aggression. In: The Psychopathic Mind. Jason Aronson, Incorporated. p. 1–55. https://books.google.com/books/about/The_Psychopathic_Mind.html?id=8Ksg5xo3Y7cC&redir_esc=y.
322. Heath RG. 1954. Chapter 1: The Theoretical Framework for a Multidisciplinary Approach to Human Behavior. In: Studies in Schizophrenia. Harvard University Press. p. 9–55. https://books.google.com/books/about/Studies_in_Schizophrenia.html?id=s02qngEACAAJ&redir_esc=y.
323. Heath RG, Leach BE, Monroe RR, Mickle WA, Strohmeyer FB. 1954. Addendum B: Immediate Chemical and Behavioral Effects with Stimulation of Chronically Implanted Electrodes in Rhesus Monkeys and in Patients. In: Studies in Schizophrenia. Harvard University Press. p. 555–564. https://books.google.com/books/about/Studies_in_Schizophrenia.html?id=s02qngEACAAJ&redir_esc=y.
324. Berns G. 2005. Capter 5: The Electric Pleasuredome. In: Satisfaction. Henry Holt and Company. p. 104–123. https://books.google.com/books/about/Satisfaction.html?id=6T-d5nOAP-8C&redir_esc=y.
325. Heath RG. 1992. Correlation of Brain Activity with Emotion: A Basis for Developing Treatment of Violent-Aggressive Behavior. Journal of the American Academy of Psychoanalysis. 20(3):335–346. doi:10.1521/jaap.1.1992.20.3.335. http://dx.doi.org/10.1521/jaap.1.1992.20.3.335.
326. King HE. 1961. Psycological effects of excitation in the limic system. In: Sheer DE, editor. Electrical Stimulation of the Brain. The University of Texas Press. p. 477–486. https://openlibrary.org/books/OL6246514M/Electrical_stimulation_of_the_brain.
327. DELGADO JMR, MARK V, SWEET W, ERVIN F, WEISS G, BACH-Y-RITA G, HAGIWARA R. 1968. INTRACEREBRAL RADIO STIMULATION AND RECORDING IN COMPLETELY FREE PATIENTS. The Journal of Nervous and Mental Disease. 147(4):329–340. doi:10.1097/00005053-196810000-00001. http://dx.doi.org/10.1097/00005053-196810000-00001.
328. Stevens JR. 1969. Deep Temporal Stimulation in Man. Arch Neurol. 21(2):157. doi:10.1001/archneur.1969.00480140057006. http://dx.doi.org/10.1001/archneur.1969.00480140057006.
329. Hitchcock E, Cairns V. 1973. Amygdalotomy. Postgraduate Medical Journal. 49(578):894–904. doi:10.1136/pgmj.49.578.894. http://dx.doi.org/10.1136/pgmj.49.578.894.
330. Bejjani BP, Houeto JL, Hariz M, Yelnik J, Mesnage V, Bonnet AM, Pidoux B, Dormont D, Cornu P, Agid Y. 2002. Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology. 59(9):1425–1427. doi:10.1212/01.wnl.0000031428.31861.23. http://dx.doi.org/10.1212/01.wnl.0000031428.31861.23.
331. Akert K. 1961. Diencephalon. In: Sheer DE, editor. Electrical Stimulation of the Brain. The University of Texas Press. p. 288–310. https://openlibrary.org/books/OL6246514M/Electrical_stimulation_of_the_brain.
332. Hunsperger RW. 1955. Role of substantia grisea centralis mesencephali in electrically-induced rage reactions. In: Kappers JA, editor. Progress in Neurobiology. Elsevier. p. 289–294. https://books.google.com/books/about/Progress_in_neurobiology.html?id=HBRPAQAAIAAJ&redir_esc=y.
333. DELGADO JMR. 1967. SOCIAL RANK AND RADIO-STIMULATED AGGRESSIVENESS IN MONKEYS. The Journal of Nervous and Mental Disease. 144(5):383–390. doi:10.1097/00005053-196705000-00006. http://dx.doi.org/10.1097/00005053-196705000-00006.
334. WASMAN M, FLYNN JP. 1962. Directed Attack Elicited from Hypothalamus. Archives of Neurology. 6(3):220–227. doi:10.1001/archneur.1962.00450210048005. http://dx.doi.org/10.1001/archneur.1962.00450210048005.
335. Flynn JP. 1967. The Neural Basis of Aggression in Cats. In: Glass DC, editor. Neurophysiology and Emotion. Rockefeller University Press. p. 40–60. https://books.google.com/books/about/Neurophysiology_and_Emotion.html?id=dvREAAAAIAAJ&redir_esc=y.
336. Adams D, Flynn JP. 1966. TRANSFER OF AN ESCAPE RESPONSE FROM TAIL SHOCK TO BRAIN‐STIMULATED ATTACK BEHAVIOR. J Exper Analysis Behavior. 9(4):401–408. doi:10.1901/jeab.1966.9-401. http://dx.doi.org/10.1901/jeab.1966.9-401.
337. Roberts WW, Kiess HO. 1964. Motivational properties of hypothalamic aggression in cats. Journal of Comparative and Physiological Psychology. 58(2):187–193. doi:10.1037/h0042377. http://dx.doi.org/10.1037/h0042377.
338. Bandler RJ Jr, Chi CC, Flynn JP. 1972. Biting Attack Elicited by Stimulation of the Ventral Midbrain Tegmentum of Cats. Science. 177(4046):364–366. doi:10.1126/science.177.4046.364. http://dx.doi.org/10.1126/science.177.4046.364.
339. Egger MD, Flynn JP. 1963. EFFECTS OF ELECTRICAL STIMULATION OF THE AMYGDALA ON HYPOTHALAMICALLY ELICITED ATTACK BEHAVIOR IN CATS. Journal of Neurophysiology. 26(5):705–720. doi:10.1152/jn.1963.26.5.705. http://dx.doi.org/10.1152/jn.1963.26.5.705.
340. Block CH, Siegel A, Edinger H. 1980. Effects of amygdaloid stimulation upon trigeminal sensory fields of the LIP that are established during hypothalamically-elicited quiet biting attack in the cat. Brain Research. 197(1):39–55. doi:10.1016/0006-8993(80)90433-3. http://dx.doi.org/10.1016/0006-8993(80)90433-3.
341. Stoddard-Apter SL, MacDonnell MF. 1980. Septal and amygdalar efferents to the hypothalamus which facilitate hypothalamically elicited intraspecific aggression and associated hissing in the cat. An autoradiographic study. Brain Research. 193(1):19–32. doi:10.1016/0006-8993(80)90942-7. http://dx.doi.org/10.1016/0006-8993(80)90942-7.
342. Bandler R. 1975. Predatory aggression: Midbrain-pontine junction rather than hypothalamus as the critical structure? Aggr Behav. 1(3):261–266. doi:10.1002/1098-2337(1975)1:3<261::aid-ab2480010306>3.0.co;2-e. http://dx.doi.org/10.1002/1098-2337(1975)1:3<261::aid-ab2480010306>3.0.co;2-e.
343. Bandler RJ. 1977. Predatory Behavior in the Cat Elicited by Lower Brain Stem and Hypothalamic Stimulation: a Comparison. Brain Behav Evol. 14(6):440–460. doi:10.1159/000125807. http://dx.doi.org/10.1159/000125807.
344. Siegel A, Brutus M. 1990. Neural substrates of aggression and rage in the cat. In: Epstein AN, Morrison AR, editors. Progress in Psychobiology and Physiological Psychology. Academic Press. p. 135–233. https://books.google.com/books/about/Progress_in_Psychobiology_and_Physiologi.html?id=QdxFBQAAQBAJ&redir_esc=y.
345. Shaikh MB, Barrett JA, Siegel A. 1987. The pathways mediating affective defense and quiet biting attack behavior from the midbrain central gray of the cat: an autoradiographic study. Brain Research. 437(1):9–25. doi:10.1016/0006-8993(87)91522-8. http://dx.doi.org/10.1016/0006-8993(87)91522-8.
346. Delgado JM. 1967. Aggression and defense under cerebral radio control. UCLA Forum in Medical Sciences. 7:171–193. https://pubmed.ncbi.nlm.nih.gov/4972332/.
347. DELGADO JMR. 1966. Aggressive Behavior Evoked by Radio Stimulation in Monkey Colonies. Am Zool. 6(4):669–681. doi:10.1093/icb/6.4.669. http://dx.doi.org/10.1093/icb/6.4.669.
348. Plotnik R, Mir D, Delgado JMR. 1971. Aggression, Noxiousness, and Brain Stimulation in Unrestrained Rhesus Monkeys. In: Eleftheriou BE, Scott JP, editors. The Physiology of Aggression and Defeat. Springer US. p. 143–221. https://books.google.com/books/about/The_Physiology_of_Aggression_and_Defeat.html?id=ku19AAAAIAAJ&redir_esc=y.
349. Robinson BW, Alexander M, Bowne G. 1969. Dominance reversal resulting from aggressive responses evoked by brain telestimulation. Physiology & Behavior. 4(5):749–752. doi:10.1016/0031-9384(69)90111-5. http://dx.doi.org/10.1016/0031-9384(69)90111-5.
350. Alexander M, Perachio AA. 1973. The influence of target sex and dominance on evoked attack in rhesus monkeys. American J Phys Anthropol. 38(2):543–547. doi:10.1002/ajpa.1330380264. http://dx.doi.org/10.1002/ajpa.1330380264.
351. Kruk MR, Van Der Poel AM, Meelis W, Hermans J, Mostert PG, Mos J, Lohman AHM. 1983. Discriminant analysis of the localization of aggression-inducing electrode placements in the hypothalamus of male rats. Brain Research. 260(1):61–79. doi:10.1016/0006-8993(83)90764-3. http://dx.doi.org/10.1016/0006-8993(83)90764-3.
352. Woodworth CH. 1971. Attack elicited in rats by electrical stimulation of the lateral hypothalamus. Physiology & Behavior. 6(4):345–353. doi:10.1016/0031-9384(71)90166-1. http://dx.doi.org/10.1016/0031-9384(71)90166-1.
353. Black SL, Vanderwolf CH. 1969. Thumping behavior in the rabbit. Physiology & Behavior. 4(4):445–449. doi:10.1016/0031-9384(69)90134-6. http://dx.doi.org/10.1016/0031-9384(69)90134-6.
354. Hallett M. 2007. Transcranial Magnetic Stimulation: A Primer. Neuron. 55(2):187–199. doi:10.1016/j.neuron.2007.06.026. http://dx.doi.org/10.1016/j.neuron.2007.06.026.
355. Terao Y, Ugawa Y. 2002. Basic Mechanisms of TMS. Journal of Clinical Neurophysiology. 19(4):322–343. doi:10.1097/00004691-200208000-00006. http://dx.doi.org/10.1097/00004691-200208000-00006.
356. Silvanto J, Cattaneo Z. 2017. Common framework for “virtual lesion” and state-dependent TMS: The facilitatory/suppressive range model of online TMS effects on behavior. Brain and Cognition. 119:32–38. doi:10.1016/j.bandc.2017.09.007. http://dx.doi.org/10.1016/j.bandc.2017.09.007.
357. Devlin JT, Watkins KE. 2006. Stimulating language: insights from TMS. Brain. 130(3):610–622. doi:10.1093/brain/awl331. http://dx.doi.org/10.1093/brain/awl331.
358. de Graaf TA, Koivisto M, Jacobs C, Sack AT. 2014. The chronometry of visual perception: Review of occipital TMS masking studies. Neuroscience & Biobehavioral Reviews. 45:295–304. doi:10.1016/j.neubiorev.2014.06.017. http://dx.doi.org/10.1016/j.neubiorev.2014.06.017.
359. Balconi M. 2013. Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques. Neurosci Bull. 29(3):381–389. doi:10.1007/s12264-013-1309-z. http://dx.doi.org/10.1007/s12264-013-1309-z.
360. Sondergaard RE, Martino D, Kiss ZHT, Condliffe EG. 2021. TMS Motor Mapping Methodology and Reliability: A Structured Review. Front Neurosci. 15. doi:10.3389/fnins.2021.709368. http://dx.doi.org/10.3389/fnins.2021.709368.
361. Thut G, Schyns PG, Gross J. 2011. Entrainment of Perceptually Relevant Brain Oscillations by Non-Invasive Rhythmic Stimulation of the Human Brain. Front Psychology. 2. doi:10.3389/fpsyg.2011.00170. http://dx.doi.org/10.3389/fpsyg.2011.00170.
362. Brunel N, Hakim V. 1999. Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates. Neural Computation. 11(7):1621–1671. doi:10.1162/089976699300016179. http://dx.doi.org/10.1162/089976699300016179.
363. Engel AK, Fries P. 2010. Beta-band oscillations — signalling the status quo? Current Opinion in Neurobiology. 20(2):156–165. doi:10.1016/j.conb.2010.02.015. http://dx.doi.org/10.1016/j.conb.2010.02.015.
364. Knyazev GG. 2007. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience & Biobehavioral Reviews. 31(3):377–395. doi:10.1016/j.neubiorev.2006.10.004. http://dx.doi.org/10.1016/j.neubiorev.2006.10.004.
365. Chen S, Tan Z, Xia W, Gomes CA, Zhang X, Zhou W, Liang S, Axmacher N, Wang L. 2021. Theta oscillations synchronize human medial prefrontal cortex and amygdala during fear learning. Sci Adv. 7(34). doi:10.1126/sciadv.abf4198. http://dx.doi.org/10.1126/sciadv.abf4198.
366. Rosa M, Franzini A, Giannicola G, Messina G, Altamura AC, Priori A. 2012. Hypothalamic Oscillations in Human Pathological Aggressiveness. Biological Psychiatry. 72(12):e33–e35. doi:10.1016/j.biopsych.2012.06.007. http://dx.doi.org/10.1016/j.biopsych.2012.06.007.
367. Herrmann CS, Munk MHJ, Engel AK. 2004. Cognitive functions of gamma-band activity: memory match and utilization. Trends in Cognitive Sciences. 8(8):347–355. doi:10.1016/j.tics.2004.06.006. http://dx.doi.org/10.1016/j.tics.2004.06.006.
368. Heath RG. 1964. Activity of the Human Brain during Emotional Thought. In: Heath Robert Galbraith, editor. The Role of Pleasure in Behavior. Hoeber Medical Division, Harper & Row. p. 83–106. https://books.google.com/books/about/The_role_of_pleasure_in_behavior.html?id=BSN-AAAAMAAJ&redir_esc=y.
369. Yang J, Liu Y, Fan Y, Shen D, Shen J, Fang G. 2022. High-Frequency Local Field Potential Oscillations May Modulate Aggressive Behaviors in Mice. Biology. 11(11):1682. doi:10.3390/biology11111682. http://dx.doi.org/10.3390/biology11111682.
370. Fröhlich F, McCormick DA. 2010. Endogenous Electric Fields May Guide Neocortical Network Activity. Neuron. 67(1):129–143. doi:10.1016/j.neuron.2010.06.005. http://dx.doi.org/10.1016/j.neuron.2010.06.005.
371. Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J. 2011. Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures. Current Biology. 21(14):1176–1185. doi:10.1016/j.cub.2011.05.049. http://dx.doi.org/10.1016/j.cub.2011.05.049.
372. Zmeykina E, Mittner M, Paulus W, Turi Z. 2020. Weak rTMS-induced electric fields produce neural entrainment in humans. Sci Rep. 10(1). doi:10.1038/s41598-020-68687-8. http://dx.doi.org/10.1038/s41598-020-68687-8.
373. Okazaki YO, Nakagawa Y, Mizuno Y, Hanakawa T, Kitajo K. 2021. Frequency- and Area-Specific Phase Entrainment of Intrinsic Cortical Oscillations by Repetitive Transcranial Magnetic Stimulation. Front Hum Neurosci. 15. doi:10.3389/fnhum.2021.608947. http://dx.doi.org/10.3389/fnhum.2021.608947.
374. Persinger MA, Nolan M. 1985. Partial Amnesia for a Narrative Following Application of Theta Frequency Electromagnetic Fields? Journal of Bioelectricity. 4(2):481–494. doi:10.3109/15368378509033267. http://dx.doi.org/10.3109/15368378509033267.
375. Ruttan LA, Persinger MA, Koren S. 1990. Enhancement of Temporal Lobe-Related Experiences During Brief Exposures to Milligauss Intensity Extremely Low Frequency Magnetic Fields. Journal of Bioelectricity. 9(1):33–54. doi:10.3109/15368379009027758. http://dx.doi.org/10.3109/15368379009027758.
376. Sauseng P, Klimesch W, Heise KF, Gruber WR, Holz E, Karim AA, Glennon M, Gerloff C, Birbaumer N, Hummel FC. 2009. Brain Oscillatory Substrates of Visual Short-Term Memory Capacity. Current Biology. 19(21):1846–1852. doi:10.1016/j.cub.2009.08.062. http://dx.doi.org/10.1016/j.cub.2009.08.062.
377. Romei V, Gross J, Thut G. 2010. On the Role of Prestimulus Alpha Rhythms over Occipito-Parietal Areas in Visual Input Regulation: Correlation or Causation? Journal of Neuroscience. 30(25):8692–8697. doi:10.1523/jneurosci.0160-10.2010. http://dx.doi.org/10.1523/jneurosci.0160-10.2010.
378. FRIEDMAN H, BECKER RO, BACHMAN CH. 1967. Effect of Magnetic Fields on Reaction Time Performance. Nature. 213(5079):949–950. doi:10.1038/213949a0. http://dx.doi.org/10.1038/213949a0.
379. Frey AH. 1967. Brain stem evoked responses associated with low-intensity pulsed UHF energy. Journal of Applied Physiology. 23(6):984–988. doi:10.1152/jappl.1967.23.6.984. http://dx.doi.org/10.1152/jappl.1967.23.6.984.
380. Bolshakov MA, Alekseev SI. 1992. Bursting responses of Lymnea neurons to microwave radiation. Bioelectromagnetics. 13(2):119–129. doi:10.1002/bem.2250130206. http://dx.doi.org/10.1002/bem.2250130206.
381. Beason RC, Semm P. 2002. Responses of neurons to an amplitude modulated microwave stimulus. Neuroscience Letters. 333(3):175–178. doi:10.1016/s0304-3940(02)00903-5. http://dx.doi.org/10.1016/s0304-3940(02)00903-5.
382. Alekseev SI, Gordiienko OV, Radzievsky AA, Ziskin MC. 2009. Millimeter wave effects on electrical responses of the sural nerve in vivo. Bioelectromagnetics. 31(3):180–190. doi:10.1002/bem.20547. http://dx.doi.org/10.1002/bem.20547.
383. Pikov V, Arakaki X, Harrington M, Fraser SE, Siegel PH. 2010. Modulation of neuronal activity and plasma membrane properties with low-power millimeter waves in organotypic cortical slices. J Neural Eng. 7(4):045003. doi:10.1088/1741-2560/7/4/045003. http://dx.doi.org/10.1088/1741-2560/7/4/045003.
384. Thuröczy G, Kubinyi G, Bodó M, Bakos J, Szabó LD. 1994. Simultaneous Response of Brain Electrical Activity (EEG) and Cerebral Circulation (REG) to Microwave Exposure in Rats. Reviews on Environmental Health. 10(2). doi:10.1515/reveh.1994.10.2.135. http://dx.doi.org/10.1515/reveh.1994.10.2.135.
385. Hinrikus H, Bachmann M, Lass J, Karai D, Tuulik V. 2008. Effect of low frequency modulated microwave exposure on human EEG: Individual sensitivity. Bioelectromagnetics. 29(7):527–538. doi:10.1002/bem.20415. http://dx.doi.org/10.1002/bem.20415.
386. Bach S, Baldwin M, Lewis S. 1959. SOME EFFECTS OF ULTRA-HIGH FREQUENCY ENERGY ON PRIMATE CEREBRAL ACTIVITY. In: PROCEEDINGS OF THIRD ANNUAL TRI-SERVICE CONFERENCE ON BIOLOGICAL EFFECTS OF MICROWAVE RADIATING EQUIPMENTS 25-27 AUGUST 1959. UNIVERSITY OF CALIFORNIA PRINTING DEPARTMENT. p. 82–93. https://apps.dtic.mil/sti/html/tr/AD0234788/.
387. Aviation Week. 1959. High Intensity Radiation Produces Convulsions, Death in Monkey. In: Aviation Week & Space Technology (May 4, 1959). McGraw-Hill Publishing Company. p. 29–30. https://archive.aviationweek.com/issue/19590504.
388. Frey AH, Seifert E. 1968. Pulse modulated UHF energy illumination of the heart associated with change in heart rate. Life Sciences. 7(10):505–512. doi:10.1016/0024-3205(68)90068-4. http://dx.doi.org/10.1016/0024-3205(68)90068-4.
389. Misek J, Jakus J, Hamza Sladicekova K, Zastko L, Veternik M, Jakusova V, Belyaev I. 2023. Extremely low frequency magnetic fields emitted by cell phones. Front Phys. 11. doi:10.3389/fphy.2023.1094921. http://dx.doi.org/10.3389/fphy.2023.1094921.
390. Krause CM, Haarala C, Sillanmäki L, Koivisto M, Alanko K, Revonsuo A, Laine M, Hämäläinen H. 2003. Effects of electromagnetic field emitted by cellular phones on the EEG during an auditory memory task: A double blind replication study. Bioelectromagnetics. 25(1):33–40. doi:10.1002/bem.10143. http://dx.doi.org/10.1002/bem.10143.
391. Hung C-S, Anderson C, Horne JA, McEvoy P. 2007. Mobile phone ‘talk-mode’ signal delays EEG-determined sleep onset. Neuroscience Letters. 421(1):82–86. doi:10.1016/j.neulet.2007.05.027. http://dx.doi.org/10.1016/j.neulet.2007.05.027.
392. Borbély AA, Huber R, Graf T, Fuchs B, Gallmann E, Achermann P. 1999. Pulsed high-frequency electromagnetic field affects human sleep and sleep electroencephalogram. Neuroscience Letters. 275(3):207–210. doi:10.1016/s0304-3940(99)00770-3. http://dx.doi.org/10.1016/s0304-3940(99)00770-3.
393. Fertonani A, Miniussi C. 2016. Transcranial Electrical Stimulation. Neuroscientist. 23(2):109–123. doi:10.1177/1073858416631966. http://dx.doi.org/10.1177/1073858416631966.
394. Saiote C, Turi Z, Paulus W, Antal A. 2013. Combining functional magnetic resonance imaging with transcranial electrical stimulation. Front Hum Neurosci. 7. doi:10.3389/fnhum.2013.00435. http://dx.doi.org/10.3389/fnhum.2013.00435.
395. Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk H-J, Cassara AM, Neufeld E, Kuster N, Tsai L-H, et al. 2017. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields. Cell. 169(6):1029-1041.e16. doi:10.1016/j.cell.2017.05.024. http://dx.doi.org/10.1016/j.cell.2017.05.024.
396. Violante IR, Alania K, Cassarà AM, Neufeld E, Acerbo E, Carron R, Williamson A, Kurtin DL, Rhodes E, Hampshire A, et al. 2023. Non-invasive temporal interference electrical stimulation of the human hippocampus. Nat Neurosci. 26(11):1994–2004. doi:10.1038/s41593-023-01456-8. http://dx.doi.org/10.1038/s41593-023-01456-8.
397. Wessel MJ, Beanato E, Popa T, Windel F, Vassiliadis P, Menoud P, Beliaeva V, Violante IR, Abderrahmane H, Dzialecka P, et al. 2023. Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nat Neurosci. 26(11):2005–2016. doi:10.1038/s41593-023-01457-7. http://dx.doi.org/10.1038/s41593-023-01457-7.
398. Song S, Zhang J, Tian Y, Wang L, Wei P. 2021. Temporal Interference Stimulation Regulates Eye Movements and Neural Activity in the Mice Superior Colliculus. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE. p. 6231–6234. http://dx.doi.org/10.1109/embc46164.2021.9629968.
399. Missey F, Rusina E, Acerbo E, Botzanowski B, Trébuchon A, Bartolomei F, Jirsa V, Carron R, Williamson A. 2021. Orientation of Temporal Interference for Non-invasive Deep Brain Stimulation in Epilepsy. Front Neurosci. 15. doi:10.3389/fnins.2021.633988. http://dx.doi.org/10.3389/fnins.2021.633988.
400. Sunshine MD, Cassarà AM, Neufeld E, Grossman N, Mareci TH, Otto KJ, Boyden ES, Fuller DD. 2021. Restoration of breathing after opioid overdose and spinal cord injury using temporal interference stimulation. Commun Biol. 4(1). doi:10.1038/s42003-020-01604-x. http://dx.doi.org/10.1038/s42003-020-01604-x.
401. Seo T, Oh S, Jung D, Huh Y, Cho J, Kwon Y. 2018. Noninvasive Brain Stimulation Using a Modulated Microwave Signal. J Electromagn Eng Sci. 18(1):70–72. doi:10.26866/jees.2018.18.1.70. http://dx.doi.org/10.26866/jees.2018.18.1.70.
402. Oh S, Jung D, Seo T, Huh Y, Cho J, Oh J. 2021. 6.5-GHz Brain Stimulation System Using Enhanced Probe Focusing and Switch-Driven Modulation. IEEE Trans Microwave Theory Techn. 69(9):4107–4117. doi:10.1109/tmtt.2021.3075726. http://dx.doi.org/10.1109/tmtt.2021.3075726.
403. Ahsan F, Chi T, Cho R, Sheth SA, Goodman W, Aazhang B. 2022. EMvelop stimulation: minimally invasive deep brain stimulation using temporally interfering electromagnetic waves. J Neural Eng. 19(4):046005. doi:10.1088/1741-2552/ac7894. http://dx.doi.org/10.1088/1741-2552/ac7894.
404. Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC. 2019. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc Natl Acad Sci USA. 116(12):5747–5755. doi:10.1073/pnas.1815958116. http://dx.doi.org/10.1073/pnas.1815958116.
405. Dmochowski JP, Datta A, Bikson M, Su Y, Parra LC. 2011. Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng. 8(4):046011. doi:10.1088/1741-2560/8/4/046011. http://dx.doi.org/10.1088/1741-2560/8/4/046011.
406. Lee W, Faeghi P, Dorval AD, Walling JS. 2024. Wireless Beamforming for Electromagnetic Field Focusing in Brain Tissue. In: 2024 54th European Microwave Conference (EuMC). IEEE. p. 489–492. http://dx.doi.org/10.23919/eumc61614.2024.10732534.
407. Madannejad A, Sadeghi S, EbrahimiZadeh J, Ravanbakhsh F, Perez MD, Augustine R. 2020. Microwave Beamforming for Non-Invasive Brain Stimulation. In: 2020 IEEE MTT-S International Microwave Biomedical Conference (IMBioC). IEEE. p. 1–4. http://dx.doi.org/10.1109/imbioc47321.2020.9385036.
408. Schuder JC, Gold JH. 1974. Localized DC Field Produced by Diode Implanted in Isotropic Homogeneous Medium and Exposed to Uniform RF Field. IEEE Trans Biomed Eng. BME-21(2):152–163. doi:10.1109/tbme.1974.324301. http://dx.doi.org/10.1109/tbme.1974.324301.
409. Pinneo LR, Erickson EE, Kinney RA. 1971. Selective Deep Brain Stimulation With External Electrodes. In: Neuroelectric research; electroneuroprosthesis, electroanesthesia and nonconvulsive electrotherapy. Thomas. p. 405–425. https://openlibrary.org/books/OL5218776M/Neuroelectric_research.
410. Pinneo LR, Johnson P, Herron J, Rebert CS. 1975. Part I--Biocybernetic Communication. Feasibility Study for Design of a Biocybernetic Communication System.:2–6. https://apps.dtic.mil/sti/citations/ADA017405.
411. Steneck NH. 1987. 5 The Moscow Embassy Crisis. In: The Microwave Debate. MIT Press. p. 21–37. https://books.google.com/books/about/The_Microwave_Debate.html?id=WsGHAAAACAAJ&redir_esc=y.
412. Martínez JA. 2019. The “Moscow signal” epidemiological study, 40 years on. Reviews on Environmental Health. 34(1):13–24. doi:10.1515/reveh-2018-0061. http://dx.doi.org/10.1515/reveh-2018-0061.
413. Rose S. 2006. Chapter 6: Brain Gain. In: Better Humans? Demos. p. 69–78. https://books.google.com/books/about/Better_Humans.html?id=st_bAAAAMAAJ&redir_esc=y.
414. U.S. News. 1997. Wonder Weapons : The Pentagon’s quest for nonlethal arms is amazing. But is it smart? . [accessed 2025 Jun 21]. http://web.archive.org/web/20090220004814/http://www.usnews.com/usnews/culture/articles/970707/archive_007360.htm.
415. Southwest Research Institute. 1982. VIII. RADIATION ENVIRONMENTS. In: Final report on biotechnology research requirements for aeronautical systems through the year 2000. Vollume II Proceedings of Biotechnology Research Requirements Study Session, 4-8 January 1982. San Antonio, TX: Southwest Research Institute. p. 176–188. https://catalog.hathitrust.org/Record/002707777.
416. National Academies of Sciences, Engineering, and Medicine. 2020. SUMMARY. In: An Assessment of Illness in U.S. Government Employees and Their Families at Overseas Embassies. National Academies Press (US). p. 1–4. https://nap.nationalacademies.org/catalog/25889/an-assessment-of-illness-in-us-government-employees-and-their-families-at-overseas-embassies.
417. The Times. 2020. China turns Ladakh battleground with India into a ‘microwave oven.’ [accessed 2025 Mar 11]. https://www.thetimes.com/world/asia/article/china-turns-ladakh-battleground-with-india-into-a-microwave-oven-6tlwtrtzz?region=global.
418. Naor O, Krupa S, Shoham S. 2016. Ultrasonic neuromodulation. J Neural Eng. 13(3):031003. doi:10.1088/1741-2560/13/3/031003. http://dx.doi.org/10.1088/1741-2560/13/3/031003.
419. Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C. 2008. Remote Excitation of Neuronal Circuits Using Low-Intensity, Low-Frequency Ultrasound. Tanimoto H, editor. PLoS ONE. 3(10):e3511. doi:10.1371/journal.pone.0003511. http://dx.doi.org/10.1371/journal.pone.0003511.
420. Tufail Y, Matyushov A, Baldwin N, Tauchmann ML, Georges J, Yoshihiro A, Tillery SIH, Tyler WJ. 2010. Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits. Neuron. 66(5):681–694. doi:10.1016/j.neuron.2010.05.008. http://dx.doi.org/10.1016/j.neuron.2010.05.008.
421. Yoo S-S, Bystritsky A, Lee J-H, Zhang Y, Fischer K, Min B-K, McDannold NJ, Pascual-Leone A, Jolesz FA. 2011. Focused ultrasound modulates region-specific brain activity. NeuroImage. 56(3):1267–1275. doi:10.1016/j.neuroimage.2011.02.058. http://dx.doi.org/10.1016/j.neuroimage.2011.02.058.
422. Mehić E, Xu JM, Caler CJ, Coulson NK, Moritz CT, Mourad PD. 2014. Increased Anatomical Specificity of Neuromodulation via Modulated Focused Ultrasound. Avenanti A, editor. PLoS ONE. 9(2):e86939. doi:10.1371/journal.pone.0086939. http://dx.doi.org/10.1371/journal.pone.0086939.
423. Folloni D, Verhagen L, Mars RB, Fouragnan E, Constans C, Aubry J-F, Rushworth MFS, Sallet J. 2019. Manipulation of Subcortical and Deep Cortical Activity in the Primate Brain Using Transcranial Focused Ultrasound Stimulation. Neuron. 101(6):1109-1116.e5. doi:10.1016/j.neuron.2019.01.019. http://dx.doi.org/10.1016/j.neuron.2019.01.019.
424. Sironi VA. 2011. Origin and Evolution of Deep Brain Stimulation. Front Integr Neurosci. 5. doi:10.3389/fnint.2011.00042. http://dx.doi.org/10.3389/fnint.2011.00042.
425. Hull EM, Rodríguez-Manzo G. 2017. Male Sexual Behavior. In: Hormones, Brain and Behavior. Elsevier. p. 1–57. http://dx.doi.org/10.1016/b978-0-12-803592-4.00001-8.
426. He F, Yu P, Wu R. 2013. Relationship between sexual satiety and motivation, brain androgen receptors and testosterone in male mandarin voles. Behavioural Brain Research. 250:257–263. doi:10.1016/j.bbr.2013.05.022. http://dx.doi.org/10.1016/j.bbr.2013.05.022.
427. Gulia KK, Kayama Y, Koyama Y. 2018. Assessment of the septal area neuronal activity during penile erections in rapid eye movement sleep and waking in the rats. The Journal of Physiological Sciences. 68(5):567–577. doi:10.1007/s12576-017-0562-8. http://dx.doi.org/10.1007/s12576-017-0562-8.
428. Mallick HN, Tandon S, Jagannathan NR, Gulia KK, Kumar V<. 2007. Brain areas activated after ejaculation in healthy young human subjects. Indian Journal of Physiology and pharmacology. 51(1):81–85. https://europepmc.org/article/med/17877297.
429. Menon R, Süß T, Oliveira VE de M, Neumann ID, Bludau A. 2022. Neurobiology of the lateral septum: regulation of social behavior. Trends in Neurosciences. 45(1):27–40. doi:10.1016/j.tins.2021.10.010. http://dx.doi.org/10.1016/j.tins.2021.10.010.
430. Swanson LW, Cowan WM. 1979. The connections of the septal region in the rat. J of Comparative Neurology. 186(4):621–655. doi:10.1002/cne.901860408. http://dx.doi.org/10.1002/cne.901860408.
431. Jennings KJ, de Lecea L. 2020. Neural and Hormonal Control of Sexual Behavior. Endocrinology. 161(10). doi:10.1210/endocr/bqaa150. http://dx.doi.org/10.1210/endocr/bqaa150.
432. Hull EM, Meisel RL, Sachs BD. 2002. Male Sexual Behavior. In: Hormones, Brain and Behavior. Elsevier. p. 3–137. http://dx.doi.org/10.1016/b978-012532104-4/50003-2.
433. Caffé AR, van Leeuwen FW, Luiten PGM. 1987. Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus. J of Comparative Neurology. 261(2):237–252. doi:10.1002/cne.902610206. http://dx.doi.org/10.1002/cne.902610206.
434. Bayless DW, Davis CO, Yang R, Wei Y, de Andrade Carvalho VM, Knoedler JR, Yang T, Livingston O, Lomvardas A, Martins GJ, et al. 2023. A neural circuit for male sexual behavior and reward. Cell. 186(18):3862-3881.e28. doi:10.1016/j.cell.2023.07.021. http://dx.doi.org/10.1016/j.cell.2023.07.021.
435. Conrad LCA, Pfaff DW. 1976. Efferents from medial basal forebrain and hypothalamus in the rat. I. An autoradiographic study of the medial preoptic area. J of Comparative Neurology. 169(2):185–219. doi:10.1002/cne.901690205. http://dx.doi.org/10.1002/cne.901690205.
436. Yin L, Lin D. 2023. Neural control of female sexual behaviors. Hormones and Behavior. 151:105339. doi:10.1016/j.yhbeh.2023.105339. http://dx.doi.org/10.1016/j.yhbeh.2023.105339.
437. Heath RG, Hodes R. 1954. Chapter 6: Effects of Stimulation with Electrodes Chronically Implanted In Rhesus Monkeys. In: Studies in Schizophrenia. Harvard University Press. p. 109–111. https://books.google.com/books/about/Studies_in_Schizophrenia.html?id=s02qngEACAAJ&redir_esc=y.
438. Moan CE, Heath RG. 1972. Septal stimulation for the initiation of heterosexual behavior in a homosexual male. Journal of Behavior Therapy and Experimental Psychiatry. 3(1):23–30. doi:10.1016/0005-7916(72)90029-8. http://dx.doi.org/10.1016/0005-7916(72)90029-8.
439. Delgado JMR, Hamlin H. 1960. Spontaneous and Evoked Electrical Seizures in Animals and in Humans. In: Ramey ER, O’Doherty DS, editors. Electrical Studies On The Unanesthetized Brain. Literary Licensing, LLC. p. 133–158. https://books.google.com/books/about/Electrical_Studies_On_The_Unanesthetized.html?id=mL8eLwEACAAJ&redir_esc=y.
440. HIGGINS JW. 1956. Behavioral Changes During Intracerebral Electrical Stimulation. Arch NeurPsych. 76(4):399. doi:10.1001/archneurpsyc.1956.02330280057006. http://dx.doi.org/10.1001/archneurpsyc.1956.02330280057006.
441. Sem-Jacobsen CW, Torkildsen A. 1960. DEPTH RECORDING AND ELECTRICAL STIMULATION IN THE HUMAN BRAIN. In: Ramey ER, O’Doherty DS, editors. Electrical Stuedies of the Unanesthetized Brain. Literary Licensing, LLC. p. 275–290. https://books.google.com/books/about/Electrical_Studies_On_The_Unanesthetized.html?id=mL8eLwEACAAJ&redir_esc=y.
442. Gloor P. 1986. Role of the Human Limbic System in Perception, Memory, and Affect: Lessons from Temporal Lobe Epilepsy. In: The Limbic System. Raven Press. p. 159–169. https://books.google.com/books/about/The_Limbic_system.html?id=mbZrAAAAMAAJ&redir_esc=y.
443. Portenoy RK, Jarden JO, Sidtis JJ, Lipton RB, Foley KM, Rottenberg DA. 1986. Compulsive thalamic self-stimulation: A case with metabolic, electrophysiologic and behavioral correlates. Pain. 27(3):277–290. doi:10.1016/0304-3959(86)90155-7. http://dx.doi.org/10.1016/0304-3959(86)90155-7.
444. Bhargava P, Doshi P. 2008. Hypersexuality following subthalamic nucleus stimulation for <i>Parkinson’s disease</i> Neurol India. 56(4):474. doi:10.4103/0028-3886.44830. http://dx.doi.org/10.4103/0028-3886.44830.
445. Chang C-H, Chen S-Y, Hsiao Y-L, Tsai S-T, Tsai H-C. 2010. Hypomania with hypersexuality following bilateral anterior limb stimulation in obsessive-compulsive disorder. JNS. 112(6):1299–1300. doi:10.3171/2009.10.jns09918. http://dx.doi.org/10.3171/2009.10.jns09918.
446. Yih J, Beam DE, Fox KCR, Parvizi J. 2019. Intensity of affective experience is modulated by magnitude of intracranial electrical stimulation in human orbitofrontal, cingulate and insular cortices. Social Cognitive and Affective Neuroscience. 14(4):339–351. doi:10.1093/scan/nsz015. http://dx.doi.org/10.1093/scan/nsz015.
447. MacLean PD, Ploog DW. 1962. CEREBRAL REPRESENTATION OF PENILE ERECTION. Journal of Neurophysiology. 25(1):29–55. doi:10.1152/jn.1962.25.1.29. http://dx.doi.org/10.1152/jn.1962.25.1.29.
448. Robinson BW, Mishkin M. 1966. Ejaculation evoked by stimulation of the preoptic area in monkey. Physiology & Behavior. 1(3–4):269-IN11. doi:10.1016/0031-9384(66)90016-3. http://dx.doi.org/10.1016/0031-9384(66)90016-3.
449. Gulia KK, Jodo E, Kawauchi A, Miki T, Kayama Y, Mallick HN, Koyama Y. 2008. The septal area, site for the central regulation of penile erection during waking and rapid eye movement sleep in rats: A stimulation study. Neuroscience. 156(4):1064–1073. doi:10.1016/j.neuroscience.2008.08.032. http://dx.doi.org/10.1016/j.neuroscience.2008.08.032.
450. Robinson BW, Mishkin M. 1968. Penile Erection Evoked From Forebrain Structures in Macaca mulatta. Archives of Neurology. 19(2):184–198. doi:10.1001/archneur.1968.00480020070007. http://dx.doi.org/10.1001/archneur.1968.00480020070007.
451. Herberg LJ. 1963. Seminal ejaculation following positively reinforcing electrical stimulation of the rat hypothalamus. Journal of Comparative and Physiological Psychology. 56(4):679–685. doi:10.1037/h0041146. http://dx.doi.org/10.1037/h0041146.
452. Vaughan E, Fisher AE. 1962. Male Sexual Behavior Induced by Intracranial Electrical Stimulation. Science. 137(3532):758–760. doi:10.1126/science.137.3532.758.b. http://dx.doi.org/10.1126/science.137.3532.758.b.
453. Van Dis H, Larsson K. 1971. Induction of sexual arousal in the castrated male rat by intracranial stimulation. Physiology & Behavior. 6(1):85–86. doi:10.1016/0031-9384(71)90021-7. http://dx.doi.org/10.1016/0031-9384(71)90021-7.
454. Caggiula AR, Hoebel BG. 1966. “Copulation-Reward Site” in the Posterior Hypothalamus. Science. 153(3741):1284–1285. doi:10.1126/science.153.3741.1284. http://dx.doi.org/10.1126/science.153.3741.1284.
455. Eibergen RD, Caggiula AR. 1973. Ventral midbrain involvement in copulatory behavior of the male rat. Physiology & Behavior. 10(3):435–441. doi:10.1016/0031-9384(73)90202-3. http://dx.doi.org/10.1016/0031-9384(73)90202-3.
456. Okada E, Aou S, Takaki A, Oomura Y, Hori T. 1991. Electrical stimulation of male monkey’s midbrain elicits components of sexual behavior. Physiology & Behavior. 50(1):229–236. doi:10.1016/0031-9384(91)90525-s. http://dx.doi.org/10.1016/0031-9384(91)90525-s.
457. Baum MJ, Tobet SA, Starr MS, Bradshaw WG. 1982. Implantation of dihydrotestosterone propionate into the lateral septum or medial amygdala facilitates copulation in castrated male rats given estradiol systemically. Hormones and Behavior. 16(2):208–223. doi:10.1016/0018-506x(82)90020-4. http://dx.doi.org/10.1016/0018-506x(82)90020-4.
458. Stark CP, Alpern HP, Fuhrer J, Trowbridge MG, Wimbish H, Smock T. 1998. The Medial Amygdaloid Nucleus Modifies Social Behavior in Male Rats. Physiology & Behavior. 63(2):253–259. doi:10.1016/s0031-9384(97)00438-1. http://dx.doi.org/10.1016/s0031-9384(97)00438-1.
459. Stark CP. 2005. Behavioral Effects of Stimulation of the Medial Amygdala in the Male Rat Are Modified by Prior Sexual Experience. The Journal of General Psychology. 132(2):207–224. doi:10.3200/genp.132.2.207-224. http://dx.doi.org/10.3200/genp.132.2.207-224.
460. Perachio AA, Marr LD, Alexander M. 1979. Sexual behavior in male rhesus monkeys elicited by electrical stimulation of preoptic and hypothalamic areas. Brain Research. 177(1):127–144. doi:10.1016/0006-8993(79)90923-5. http://dx.doi.org/10.1016/0006-8993(79)90923-5.
461. MacLEAN PD, DUA S, DENNISTON RH. 1963. Cerebral Localization for Scratching and Seminal Discharge. Archives of Neurology. 9(5):485–497. doi:10.1001/archneur.1963.00460110053006. http://dx.doi.org/10.1001/archneur.1963.00460110053006.
462. Perachio AA, Alexander M, Robinson BW. 1969. Sexual behaviour evoked by telestimulation. In: Carpenter CR, Hofer HO, editors. Proceedings: Neurology, physiology, and infectious diseases: Volume 3. S. Karger. p. 68–74. https://books.google.com/books/about/Proceedings_Neurology_physiology_and_inf.html?id=OQcVRQAACAAJ&redir_esc=y.
463. Pfaff DW, Sakuma Y. 1979. Facilitation of the lordosis reflex of female rats from the ventromedial nucleus of the hypothalamus. The Journal of Physiology. 288(1):189–202. doi:10.1113/jphysiol.1979.sp012690. http://dx.doi.org/10.1113/jphysiol.1979.sp012690.
464. RUBIN BS, BARFIELD RJ. 1980. Priming of Estrous Responsiveness by Implants of 17β- Estradiol in the Ventromedial Hypothalamic Nucleus of Female Rats*. Endocrinology. 106(2):504–509. doi:10.1210/endo-106-2-504. http://dx.doi.org/10.1210/endo-106-2-504.
465. Koyama Y, Fujita I, Aou S, Oomura Y. 1988. Proceptive presenting elicited by electrical stimulation of the female monkey hypothalamus. Brain Research. 446(1):199–203. doi:10.1016/0006-8993(88)91316-9. http://dx.doi.org/10.1016/0006-8993(88)91316-9.
466. Oomura Y, Aou S, Koyama Y, Fujita I, Yoshimatsu H. 1988. Central control of sexual behavior. Brain Research Bulletin. 20(6):863–870. doi:10.1016/0361-9230(88)90103-7. http://dx.doi.org/10.1016/0361-9230(88)90103-7.
467. Sakuma Y, Pfaff DW. 1979. Facilitation of female reproductive behavior from mesensephalic central gray in the rat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 237(5):R278–R284. doi:10.1152/ajpregu.1979.237.5.r278. http://dx.doi.org/10.1152/ajpregu.1979.237.5.r278.
468. Dixson AF. 2021. Part III - The Evolution of Reproduction: Chapter 9 - The Evolution of Mating-induced and Spontaneous Ovulation. Mammalian Sexuality.:248–264. https://www.cambridge.org/core/books/mammalian-sexuality/1F3F5645844775F2E9B0590DFD791D70.
469. Harris GW. 1937. The induction of ovulation in the rabbit, by electrical stimulation of the hypothalamo-hypophysial mechanism. Proceedings of the Royal Society of London Series B - Biological Sciences. 122(828). https://royalsocietypublishing.org/doi/10.1098/rspb.1937.0031.
470. Critchlow V. 1958. Ovulation Induced by Hypothalamic Stimulation in the Anesthetized Rat. American Journal of Physiology-Legacy Content. 195(1):171–174. doi:10.1152/ajplegacy.1958.195.1.171. http://dx.doi.org/10.1152/ajplegacy.1958.195.1.171.
471. PRZEKOP F, DOMAŃSKI E. 1970. INDUCTION OF OVULATION IN SHEEP BY ELECTRICAL STIMULATION OF HYPOTHALAMIC REGIONS. Journal of Endocrinology. 46(3):305–311. doi:10.1677/joe.0.0460305. http://dx.doi.org/10.1677/joe.0.0460305.
472. EVERETT JW. 1965. Ovulation in Rats from Preoptic Stimulation Through Platinum Electrodes. Importance of Duration and Spread of Stimulus. Endocrinology. 76(6):1195–1201. doi:10.1210/endo-76-6-1195. http://dx.doi.org/10.1210/endo-76-6-1195.
473. Koikegami H, Yamada T, Usui K. 1954. STIMULATION OF AMYGDALOID NUCLEI AND PERIAMYGDALOID CORTEX WITH SPECIAL REFERENCE TO ITS EFFECTS ON UTERINE MOVEMENTS AND OVULATION. Psychiatry Clin Neurosci. 8(1):7–31. doi:10.1111/j.1440-1819.1954.tb01079.x. http://dx.doi.org/10.1111/j.1440-1819.1954.tb01079.x.
474. VELASCO ME, TALEISNIK S. 1969. Release of Gonadotropins Induced by Amygdaloid Stimulation in the Rat. Endocrinology. 84(1):132–139. doi:10.1210/endo-84-1-132. http://dx.doi.org/10.1210/endo-84-1-132.
475. Haterius HO, Ferguson JKW. 1938. EVIDENCE FOR THE HORMONAL NATURE OF THE OXYTOCIC PRINCIPLE OF THE HYPOPHYSIS. American Journal of Physiology-Legacy Content. 124(2):314–321. doi:10.1152/ajplegacy.1938.124.2.314. http://dx.doi.org/10.1152/ajplegacy.1938.124.2.314.
476. Cross BA. 1958. Hypothalamic Control of the Secretion of Oxytocin and Adrenaline. In: Pathophysiologia Diencephalica. Springer. p. 167–181. https://openlibrary.org/books/OL6265355M/Pathophysiologia_diencephalica.
477. Setekleiv J. 1964. Uterine Motility of the Estrogenized Rabbit. Acta Physiologica Scandinavica. 62(4):313–322. doi:10.1111/j.1748-1716.1964.tb10429.x. http://dx.doi.org/10.1111/j.1748-1716.1964.tb10429.x.